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ABSTRACT 

This thesis investigates the role of false positive detections in simulated combat 

environments.  Existing combat models tend to overlook or downplay false positive 

detections.  Signal Detection Theory provides the framework for analysis of an 

observer’s hits, misses, correct rejections, and false alarms.  The experimenter 

hypothesized that false alarm rates are a function of observer experience, task 

instructions, and scene difficulty.  In support of this thesis, the researcher developed 24 

computer images containing varying numbers of human combatants in an urban 

environment.  Sixteen students at the Naval Postgraduate School volunteered as observers 

for this experiment.  Experimental results revealed that the factors significantly affecting 

false alarm rates were scene difficulty, task instructions, and the interaction of these two 

factors.  Observer experience was not shown to be statistically significant.  Observers 

given permissive instructions generated up to 3.5 times as many false alarms as did those 

given restrictive instructions.  This experiment showed that the practice of modeling false 

alarms solely as functions of target and scene characteristics is inadequate.  With respect 

to the generation of false alarms, future combat models must incorporate an assessment 

of the instructions given to the observer. 
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EXECUTIVE SUMMARY 

 Combat models and simulations play important roles in military training and 

research.  Simulations that include force-on-force maneuvering and engagements contain 

parameters and algorithms that govern their interactions.  Modelers typically take great 

care to accurately model the physical properties that most affect target detections.  

Despite their complexity, however, combat models tend to implicitly overlook or 

downplay “false alarms.”  Signal Detection Theory succinctly describes the target 

detection environment replicated in combat models and facilitates analysis of an 

observer’s hits, misses, correct rejections, and false alarms.   

 Current Army field manuals encourage Soldiers to accept false alarms rather than 

missed targets.  Additionally, most studies in target detection omit the possibility of more 

than one target per scene.  The experimenter hypothesized that false alarm rates will 

decrease as observer experience increases, as instructions become more restrictive, and as 

targets become more salient.  In support of this thesis, the researcher developed 24 

computer images containing varying numbers of human combatants in an urban 

environment.  Sixteen students at the Naval Postgraduate School volunteered as observers 

for a laboratory experiment.   

 Experimental results revealed that the statistically significant factor affecting false 

alarm rates were scene difficulty and task instructions.  The interaction between these two 

factors was also a significant factor.  Analysis of hit rates revealed that the only 

significant factor was scene difficulty.  Observer experience was not shown to be 

significant in either case.  Further analysis revealed that when inspecting easy scenes the 

average false alarm rate of those given permissive instructions was more than 3.5 times 

that of those given restrictive instructions.  For harder scenes, the ratio of the differences 

is only 1.9. 

 This experiment showed that the practice of modeling false alarms solely as 

functions of target and scene characteristics is inadequate.  With respect to the generation 

of false alarms, future combat models must incorporate an assessment of the instructions 

given to the observer (and possibly training, fatigue, rules of engagement). 



 

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 xv

ACKNOWLEDGMENTS 

 I gratefully acknowledge the assistance of Patrick Jungkuntz and Dr. Robert 

Easterling in developing the experiment and processing its results. 

 Above all others on this earth I give my love, thanks, and appreciation to my wife, 

Mary. 

 



 

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

 1

I. INTRODUCTION  

A. STATEMENT OF THE PROBLEM 

 The United States Department of Defense makes great use of combat models.  

The algorithms of these models vary in complexity and employ algorithmic entities to 

represent personnel and weapons systems.  These models typically contain sophisticated 

perception algorithms that focus on whether these entities can “see” each other.  At a 

given point in time, a computer model determines visibility of one entity by another by 

evaluating parameters such as range, azimuth, terrain, and ambient conditions.  If 

visibility exists, then the entity will take action as defined by the algorithm.  If visibility 

does not exist, then the entity will take some other action.  Due to the use of fixed values 

these models often “yield questionable results for individual units” (Correia, 2005).  Such 

algorithms emphasize the physical aspects of target detection while all but neglecting the 

mindset of the entity.  Even the most complex combat models may neglect the possibility 

of entities mistakenly perceiving other entities that do not exist.  These entities therefore 

do not accurately represent human behavior on the battlefield.  The result is that the 

quality and effectiveness of the combat model are diminished. 

 In training and in combat, there are many instances when one member of a patrol 

or crew announces that he “thinks he sees something.”  For instance, suppose a Soldier in 

an urban combat situation perceives a person through a doorway.  Depending on the 

tactical situation, he chooses to maneuver, expend ammunition, and communicate with 

superiors and subordinates.  At the very least, he may momentarily stop to consider his 

options.  After developing the situation, the Soldier realizes that the supposed “person” 

was simply a coat and hat hanging on a hook.  He then communicates the discovery to his 

unit and resumes the mission.  While the consequences of this event may appear 

negligible, they nonetheless influence the mission’s ultimate outcome.  At the very least, 

the event caused a minor delay in the patrol’s arrival at subsequent locations on the 

battlefield.  Through a combination of training, recent experience, intelligence briefings, 

adrenaline, and innumerable intangible factors, the Soldier nonetheless “thought he saw 
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something.”  After further inspection and investigation, however, he determined his 

initial detection to be incorrect.  The Soldier in this scenario experienced what is known 

as a false positive detection. 

 Briefly, Signal Detection Theory involves “two possible states of the world, the 

information, and the decision…  The two states of the world are often the absence and the 

presence of a signal” (Green & Swets, 1988).  An observer gathers information through 

observation and decides to respond to the signal in one way or another.  In general, the 

observer may respond with either “signal” or “no signal” to any of the stimuli.  If a signal 

is present, then the observer’s correct declaration of “signal” is deemed a “hit,” while the 

participant’s incorrect declaration of “no signal” is deemed a “miss.”  Naturally, a 

response of “no signal” when no signal is present is called a “correct rejection.”  Finally, 

if the participant’s response is “signal” when a signal is, in fact, not present, then this is 

declared a “false alarm” or “false positive.” 

 Sensitivity is “a measure of the subject’s proficiency” to the difference between 

the two states of “signal” and “no signal,” and “is simply the observer’s ability to 

discriminate” between those states (Macmillan & Creelman, 1991).  Denoted by d’, 

sensitivity is scaled between zero and one, with an infallible observer having a d’ equal to 

one.  Response bias refers to a participant’s “willingness to say “yes” [that is, signal 

present] rather than “no” [that is, no signal present]” (Macmillan & Creelman, 1991), and 

is also scaled between zero and one.  Varying either the observer’s sensitivity or bias, or 

both, changes his resultant rates of hits and false alarms. 

 The previous example of the Soldier on patrol illustrates the mechanics of Signal 

Detection Theory.  The two ‘states’ here are whether the person through the doorway is 

an enemy combatant (a target) or a friendly or noncombatant (a non-target), and whether 

the Soldier assesses the person as a target or non-target.  The resulting four possible 

combinations of truth/assessment are target/target (a “hit”), target/non-target (a “miss”), 

non-target/non-target (a “correct rejection”), and non-target/target (a “false alarm”).  For 

a “hit” the Soldier accurately detects an enemy, while for a “correct rejection” the Soldier 

rightly holds his fire.  The “false alarm” of detecting a friendly as an enemy and the 

“miss” of failing to detect an enemy both carry significant adverse consequences. 
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 Now, suppose the Soldier was told that all enemy combatants are (absurdly) 

characterized by red shirts and red hats.  His resulting sensitivity would be very high, 

because he is readily able to distinguish enemy combatants from fellow Soldiers and 

noncombatants.  Or suppose that the Soldier was recently reprimanded and demoted after 

issuing a “false positive” report during a previous patrol.  He might favor missing a 

legitimate target much more than risking another such error.  He would require much 

more certain information about the target before deciding to respond, resulting in a bias 

against determining that the person in the doorway is an enemy combatant. 

 By failing to appropriately account for the detections of non-targets, combat 

models implicitly ignore the possibility of entities generating false positive detections.  

Attempts to include false alarms in a model’s design often consist of inserting additional 

entities into the model.  These entities serve only as a means of generating false alarms 

and are not otherwise a part of the simulation.  While the resulting false alarms may 

loosely approximate the expected number of false alarms, they are generally not 

descended from experimental measures of human performance.  The goal of combat 

models is to accurately reflect modern warfare, and better models will result in more 

success on future battlefields.  Recording the responses of Soldiers in target-detection 

situations similar to those in a modeled environment and designing the model’s entities 

accordingly will improve the resulting combat model.   

B. RESEARCH QUESTIONS 

The broad question under investigation is, “What is the frequency of false positive 

perception in unaided visual search for human targets?”  Signal Detection Theory 

provides a broad basis from which to examine this question.  Its theoretical structure 

emphasizes the interactions of bias and sensitivity with respect to target detection 

performance.  The goal of this study, then, is to determine how bias and sensitivity 

influence false positives when looking for human targets.  The following research 

questions follow: How does real-world training and experience influence an observer’s 

rate of false positive detections?  How do task instructions influence a searcher’s rate of 

false positive detections?  How does the detectability of a target within a scene affect an 
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observer’s rate of false positive detections?  These questions touch upon aspects of bias 

and sensitivity that are likely to be important indicators of an observer’s target detection 

performance. 

C. LIMITATIONS OF THE STUDY 

 The research and experiment are guided toward determining the causes of false 

positive detections in an infantry combat environment.  The observer is a visually 

unaided human and the target is a human-like figure in a computer-generated combat 

environment.  In particular, the experiment is designed to determine the extent to which 

an observer’s target detection characteristics are the product of bias and sensitivity, and 

whether combat training or experiences significantly influence the observer’s responses.  

In all cases, the target detection situation is static. 

D. THESIS ORGANIZATION 

 The remainder of this thesis will be organized as follows: 

• Chapter II: Literature Review.  A look at recent and classic research in the 
fields of combat models, signal detection theory, military doctrine, and 
eye tracking. 

• Chapter III: Method.  Describes the experimental procedures in light of the 
understanding developed in Chapter II. 

• Chapter IV: Results and Analysis.  Statistical evaluation of the data. 

• Chapter V: Discussion.  Qualitative analysis of the data given the 
statistical evaluation. 

• Chapter VI: Conclusion and Recommendations.  Discussion of the 
implications of experimental results on future target detection studies and 
to current and future combat models. 
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II. LITERATURE REVIEW 

A.  CURRENT STATE OF COMBAT MODELS 

 Combat models can be very powerful in training Soldiers to make informed 

decisions.  For some purposes, high resolution combat models provide the tactical level 

detail needed to shed light on individual performance and small unit engagements.  They 

allow the representation and tracking of individual entities.  For other purposes, the 

aggregation of hundreds or thousands of personnel and systems in low resolution combat 

models is more appropriate.  These aggregated force simulations often integrate various 

analytical models.  Additionally, the training and reinforcing of tactics and procedures are 

the intended purposes of some combat models, while others are intended to reveal more 

about the nature of developing systems or equipment.  The nature of the problem being 

addressed is typically the driving factor behind which type of combat model is more 

appropriate.   

Naturally, accurately representing the capabilities of the various personnel, 

systems, and units in a combat model is of paramount importance.  Otherwise, the 

simulation is little more than entertainment.  Combat modelers therefore take great care 

in designing algorithms and applying parameters.  Depending on the model’s intended 

resolution, some details are represented in total, some are directly represented, and some 

are ignored altogether.  While subsequent verification of combat models tends to be 

straightforward, developing universal techniques for validation remains elusive.  Of great 

interest in this respect is that programmers of combat models generally find it difficult to 

model errors.   

ACQUIRE and CASTFOREM (Combined Arms Support Task Force Evaluation 

Model) are two combat models currently in wide use in the United States military.  

ACQUIRE is a computer model designed to empirically assess target acquisition 

performance through the use of parameters regarding the target, the sensor, and 

atmospheric conditions (Army Modeling and Simulation Resource Repository (AMSRR), 
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2006).  While it was originally designed to “predict the probability of detecting a target” 

with the use of night vision devices, its search and target acquisition methodologies are 

nonetheless used by several advanced combat models.   

The ACQUIRE algorithm uses a single parameter called “n50” to aggregate 

sensor characteristics such as “observer expectations, training, perception of task, 

instructions, etc.”  N50 is intended to be a “scaling factor representing the point at which 

50% of the observer population can perform a target acquisition task” (Mazz, 1998a).  

Since n50 is a parameter that aggregates a great many sensor qualities and characteristics, 

some of which are not well suited to quantitative representation, application of n50 to all 

situations is less than perfectly accurate.  Fidelity continues to drop when considering that 

the entire ACQUIRE algorithm was designed to model observer-sensor characteristics 

using infrared devices.   

For some purposes, the use of n50 in ACQUIRE is wholly adequate.  Its gives 

“predictions that [are], generally, representative of what was measured in the 

laboratory”(Ratches, Vollmerhausen, & Driggers, 2001).  The creators of the algorithms 

admit, however, that “the selection of the appropriate n50 to a specific situation was not 

always straightforward,” and that factors such as training, motivation, and reward “have 

never been incorporated into the model” (Ratches et al., 2001).  Additionally, ACQUIRE 

does not attempt to model the influence of observer criterion or account for false 

detections.  To develop high-resolution combat models that represent unaided detection 

of human targets, programmers must have access to information which overcomes these 

current deficiencies.  In particular, they must have information gathered from visually 

unaided human observers that accounts for intangibles such as observer expectations, 

training, motivation, and reward.   

CASTFOREM is used “for weapon systems and tactics evaluation in brigade and 

below combined arms conflicts.”  It provides insight into aspects of combat operations 

such as force capability, force composition, and system effectiveness (Army Modeling 

and Simulation Resource Repository (AMSRR), 2005).  CASTFOREM employs the 

ACQUIRE model in its representations of false positive detections.  To account for these 

events, CASTFOREM employs a two-stage strategy.  First, it generates a distribution of 
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entities on the battlefield equivalent in form to all others except that these entities are 

internally labeled as “false targets.”  Second, it uses the algorithms of ACQUIRE to 

assess whether the real entity can perceive the false entity.   

False personnel targets in early versions of CASTFOREM were “randomly 

distributed from a Poisson distribution” with a mean density of 0.005 false targets per 

square kilometer.  This factor held only when representing an observer’s unaided view of 

personnel targets.  It differed from the representational densities of false personnel targets 

using heat sensitive vision enhancers (such as Forward Looking Infrared) and from the 

densities of false vehicle targets in both conditions.  Upon placement of a false target into 

the model, it then used “the same criteria for detection and identification” as for true 

targets.  This allowed for the correct rejection of targets subsequently identified as false 

(Mazz, 2002).  Current publications do not make clear how long an entity will continue to 

maneuver in response to a false target, or how the entity determines that the false target 

is, indeed, false. 

The largest amount of research into false target densities comes from field 

experiments with thermal image viewers.  An experiment conducted by NVESD gathered 

data from observers of moving and stationary personnel targets.  Another experiment, 

called Thermal DISSTAF, gathered similar data from observers of vehicle targets.  An 

important conclusion from analysis of these studies is confirmation of their hypothesis 

that when “expecting a higher density of targets, you should also have a higher density of 

false targets” (Mazz, 2002). 

Research into the false target representation of CASTFOREM revealed a nearly 

linear relationship between n50, scene clutter, and false targets (Mazz, 1998b).  The 

researchers developed an equation (using values for only n50 and clutter) that generates 

the mean number of false targets to display in a one kilometer square grid.  “These false 

targets are randomly positioned in the grid and become physical entit[ies] assigned the 

size and contrast of a tank target.  The ACQUIRE model is used to determine if and when 

an observer detects a false target.”  The primary research into the applicability of n50 and 

clutter to determine false target densities was in respect to multiple, individual, fully-
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exposed ground vehicles.  Similar research into the application of these factors in the 

detection of multiple partially exposed individuals is clearly necessary. 

 Regardless of the model or method, the resulting parameters influence how often 

and how long the various entities interact with each other.  The models make an attempt 

to incorporate the possibilities of false alarms and correct rejections.  In practice, 

however, this feature is often disabled by model users because it neither sufficiently 

represents reality nor aids the user in attaining training objectives.  This is indicative of 

an insufficient or inaccurate application of real-world target detection characteristics to 

existing combat models.   

B.  CURRENT DOCTRINE 

Current U.S. Army doctrine emphasizes the importance of following a hasty area 

search with a slower and more deliberate search.  Field manuals (designated by ‘FM’, an 

often hyphenated number, and a formal title) for Soldiers with specialized skills such as 

snipers, scouts, and special forces, describe this process in nearly the same way.  

Moreover, the field manual that describes the set of combat skills required by all Soldiers 

also incorporates this hasty-deliberate process.  These manuals reflect the common 

understanding that some targets are generally more visible than others, and that other 

targets require much more time and attention before detection.   

1. Soldier Skills 

 FM 21-75: Combat Skills of the Soldier (Headquarters, Department of the Army, 

1984) describes basic daytime observation and target detection as a two-step process.  

The first is a “quick, overall search” of the area of interest “for obvious targets and 

unnatural colors, outlines, or movements.”  The second step is to more thoroughly 

observe the area of interest in “overlapping, 50-meter-wide strips” from side to side.  

Upon detecting a possible target, the Soldier is to “search it well.” 

 To properly search an area in this manner, the Soldier must consider (among other 

things) position, outlines or shadows, and contrasting colors.  Likely places for enemy 

positions are roads, hilltops, and isolated buildings, in addition to areas containing terrain 

or vegetation which may provide natural cover and concealment.  The outlines of 
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personnel and equipment, including shadows, may also reveal the presence of enemy 

forces.  Additionally, contrasts between background color and the color of uniforms, 

equipment, and skin may be sufficiently large to enable detection. 

Similarly, FM 3-20.8: Scout Gunnery (Headquarters, Department of the Army, 

August 2005) states that Soldiers trained in reconnaissance techniques and practices 

begin the target acquisition process with target search and detection.  They locate targets 

using the “ground search techniques: rapid scan, slow (50-meter) scan, [and] detailed 

search.”  Rapid scan is an unaided search for obvious signs of enemy, starting in the 

center of the sector, from nearest to farthest point, and scanning left and right in a similar 

manner.  The “slow scan” refers to the 50-meter overlapping sweeps described earlier, 

and is usually conducted with the use of vehicle optics or hand-held vision enhancers.  A 

detailed search is more careful and deliberate, and the crew “concentrates on one specific 

area or location and studies that area intensely.” 

2. Sniper Skills 

 The techniques for target detection by snipers are similar to those used by 

reconnaissance and infantry units.  Despite generally having only two Soldiers in a sniper 

team instead of the nine Soldiers in a typical infantry squad, the techniques are nearly the 

same.  FM 23-10: Sniper Training (Headquarters, Department of the Army, 17Aug94) 

describes that when occupying a firing position, sniper teams conduct hasty and detailed 

searches.  The hasty search begins with the area nearest the position and extends outward, 

focusing on “specific points, terrain features, or other areas that could conceal the 

enemy.”  The detailed search consists of 50-meter sweeps overlapping by at least 10 

meters, also progressing outward.  Doctrine calls for three or four repetitions of this 

hasty-detailed search sequence to reinforce knowledge of the area.  Recognizing that 

prolonged observation greatly reduces effectiveness, and that a team can scarcely afford 

to be inefficient, the manual recommends that “during daylight, observation should be 

limited to 10 minutes followed by a 10-minute rest.” 

Finally, while FM 3-05.222: Special Forces Sniper (Headquarters, Department of 

the Army, 25April2003) also calls for hasty and detailed searches, it elaborates on the 

prescribed conduct of both.  The hasty search is to last only about 10 seconds.  Increasing 
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the likelihood of detection of enemy movement comes by “making quick glances at 

specific points” rather than sweeping eye movements.  Any potential detections are to 

receive further inspection with binoculars or telescope.  Although the detailed search 

progresses in the same manner as in FM 23-10, the manual highlights several additional 

factors that enable a sniper team to detect and identify objects in an area of search.  

Target characteristics that differ from the natural surroundings, such as geometric shapes 

and contrasting textures and colors, are often the causes of target detection. 

3. Implications of Doctrine on False Alarms 

Absent from discussion in the manuals is how to determine the identity of 

potential targets.  Knowledge of the intelligence estimate, recent enemy activity, terrain, 

local culture, and other factors are variables that highly influence the Soldier’s 

development of a target’s identity.  Likewise, since it is impossible to prescribe the most 

appropriate action upon detection in any and every situation, the manuals naturally omit 

specific instructions on how to proceed following detection.  Regardless, the accepted 

technique of hasty-deliberate visual search appears to be the primary means of keeping 

low the number of false positive detections.  This appears to stem from the error rates 

associated with the initial, hasty search.  The second search, precisely because it is slower 

and more deliberate, is therefore a safeguard against proceeding solely on the information 

gained in the hasty search.  False positive detections, then, are presumed to be more 

likely in the initial search.  Additionally, they appear to be not only less likely in 

subsequent searches, but the information gained in the slower search is assumed to refute 

or confirm the presence of suspected targets. 

 The manuals are in agreement in implying that false positive target detections are 

most likely to occur in an observer’s brief initial viewing of a scene.  Observation time is 

limited by the tactical situation because the enemy is (presumably) simultaneously 

searching for the observer: detecting the enemy after the enemy detects the observer may 

very well cost the observer his life.  The desires of self-preservation and mission 

accomplishment are sufficiently strong motivations for observers to remain alert to 

enemy presence.  Accordingly, Soldiers are urged to initially allocate target detection 

resources primarily toward the methods of the hasty search and to conduct a more 



 

thorough, detailed search only if and when the tactical situation permits.  In this way, a 

Soldier conducting a hasty search may quickly find potential targets and decide how to 

respond.  It is only when the Soldier does not find any likely targets that he then proceeds 

to conduct a deliberate search in hopes of detecting a previously overlooked target.  The 

doctrinal manuals thus appear to reveal an acceptable type of detection error, namely, the 

favoring of false alarms rather than missed targets.  Naturally, a Soldier is more willing to 

accept a greater number of false positive detections in order to increase the number of 

hits. 

C.  SIGNAL DETECTION THEORY 

Signal Detection Theory “is a theory about the way in which choices are made” 

(McNicol, 1972).  It encompasses two states and an observer’s assessment of those states.  

While some trials contain only noise, other trials contain a signal in the midst of noise.  

Observers must make decisions where the full weight of evidence does not fully support a 

particular hypothesis.  An observer’s responses to multiple trials may include responses 

of each of the four types: hits, misses, correct rejections, and false alarms.  This 

information permits calculation of the observer’s hit rate and false alarm rate: 

Number of Hits Number of HitsHit Rate = =
Number of Signal Trials Number of Hits + Misses

Number of False Alarms Number of False AlarmsFalse Alarm Rate = =
Number of Noise Trials Number of False Alarms + Correct Rejections

 
Signal Detection Theory commonly uses equal-variance Gaussian curves to 

represent the distributions of noise trials and signal trials (Figure 1).  For the purposes of 

describing a participant’s behavior and predicting future responses, the equal-variance 

Gaussian detection model is “the most commonly used distribution in signal detection 

models” (Wickens, 2002).  Its two component parameters are sensitivity and bias.  

Sensitivity, denoted by d’, reflects the distance between the means of the two curves and 

“measures how readily the signal can be detected.”  A larger value of d’ indicates a 

greater ability to distinguish signal from noise.  The observer’s criterion, denoted by the 
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Greek letter, λ , refers to the point at which the observer decides between ‘yes, signal’ 

and ‘no, noise.’  A smaller value indicates a greater willingness to decide ‘yes, signal,’ 

regardless of the evidence contained in the trial. 

 
Figure 1.   Depiction of the four responses on equal-variance normal distribution curves. 

 
The observer’s hit rate and false alarm rate permit calculations of estimates of his 

sensitivity and criterion.  Regardless of the target detection task or the measurements of 

responses, hit rates and false alarm rates do not immediately provide enough information 

to thoroughly describe the observer’s detection performance.  Applying the inverse of the 

cumulative Gaussian distribution reveals estimates of the parameters: 

  
ˆ ' ( ) (
ˆ ( )

d z Hits z FalseAlarms

z FalseAlarmsλ

= −

= −

)

These estimates, along with their associated hit and false alarm rates, more adequately 

describe the observer’s detection and decision processes.   

A critical deficiency with λ̂  is that it includes false alarms while ignoring hits.  

An observer’s criterion crosses the Gaussian curves representing ‘noise alone’ and ‘signal 
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plus noise’ each at only one point.  β  is the ratio of the relative heights of the two 

distributions at the criterion: 
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is the probability density function of the standard normal distribution at 'dλ −  (the 

difference between the observer’s sensitivity and bias).  Scaling β  by applying the 

natural logarithm permits symmetry of the available range of values.  An observer’s 

target detection performance is then best described by hit rate, false alarm rate, sensitivity 

( ), and bias (ˆ 'd ln( )β ). 

In the context of a visual unaided search for a human target, many factors 

contribute to the observer’s overall sensitivity.  The most salient of these factors include 

environmental conditions and the target’s observable shape, color, texture, and 

orientation.  Additionally, the contrast of the target with its immediate background is 

likely to play a key role in whether an observer detects the target.  In this way, the 

brightness of the target relative to its background becomes a key factor in target 

detection. 

Similarly, an observer’s bias reflects a tendency to favor one decision over 

another.  Achieving a goal of maximizing the number of hit targets is a result of the ‘cost’ 

the observer assigns to missing a target.  Any experimental design that seeks to clearly 

differentiate between response biases must assign and confer meaningful penalties for 

either missed targets or false alarms (Green & Swets, 1988).  In the urban combat 

situations represented by combat models, Soldiers rarely have an opportunity to be 

resupplied with ammunition.  As a result, at any point in a combat situation a Soldier 
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must weigh the benefit of firing at a target with the opportunity cost of firing at future 

targets.  In situations where such supply is low, the observer is in a high-bias condition 

since he knows that he must ‘make every shot count.’  Where there is no such limitation, 

the observer has fewer reasons to avoid false positive detections and is in a low-bias 

condition. 

In addition to manipulating an observer’s target engagement environment, the 

measure of an observer’s bias naturally includes other, more complex, cognitive factors.  

One such factor is that of training and combat experience similar to the target detection 

tasks in combat modeling scenarios.  An observer with extensive training in urban 

warfare or who has successfully completed many patrols or convoys in a combat 

environment may apply search patterns and techniques that may be superior to the search 

techniques of those who do not have such experience or training.  Failing to separate the 

population of observers in this manner has the potential to be a significantly confounding 

variable. 

D.  PREVIOUS RESEARCH 

 Before developing and designing an experimental procedure that involves 

pertinent aspects of certain combat models, of current military target detection doctrine, 

and of Signal Detection Theory, a review of previous studies is in order.  While 

investigation into visual tracking began in the 1930s, experiments designed to capture 

false positive detections began in earnest in the 1960s.  In generally, these experiments 

were conducted as part of wider studies of vigilance and made use of simple stimuli such 

as letters, lights, and photographs.  More recent false positive studies involve specialized 

virtual reality and point-of-gaze tracking equipment.  Gathering information regarding 

the following areas of experimental research provides great insight into the development 

of the current experiment: the number and types of participants, the equipment used, the 

types of stimuli presented, the instructions given to participants, and the experimental 

procedures. 
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1. Participants 

 In terms of participants, laboratory and field eye-tracking experiments focusing 

on visual target detection tend to exhibit similar characteristics.  Of obvious importance is 

sample size: an experiment with more participants generally results in a data set that is 

larger and more robust than an experiment with fewer participants.  Certainly, a study 

must gather enough data to achieve statistical significance in order to reach reasonable 

conclusions.  Previous studies that include false positive detections have made use of a 

range of participants.  While the range extends from as few as eight to more than 70, 

most have data from approximately 20 participants.  (See (Reddi & Carpenter, 2000) and 

(See, Warm, Dember, & Howe, 1997)).  Studies that involved few participants tended to 

build data sets by executing a large number of trials per participant or continuing through 

multiple days (i.e., repeated measures studies). 

 Equally important to obtaining a sufficiently large data set is ensuring that the 

data come from appropriate sources.  Previous false positive detection studies generally 

made great use of students at undergraduate institutions.  In these cases, researchers were 

careful to mention that all participants were volunteers.  To ensure that the data were not 

skewed by sub-normal vision, most researchers mentioned that the visual acuity of each 

participant was normal or corrected to normal.  Some allowed for self-reporting (Martens, 

2004), while others made us of standard Snellen charts to make the assessment (Mannan, 

Ruddock, & Wooding, 1997).  Only rarely were the participants compensated for their 

efforts or was there mention of the experiment having received local ethical committee 

approval. 

 Finally, for every study it remains important that the sample of people providing 

data is truly a subset of the population being modeled.  They must represent the type of 

people who will most benefit from the research.  The nature of some false positive 

detection studies allowed for participants to come from the adult population at large.  

Other studies, especially those regarding detections of targets in a military field 

environment, naturally made use of Soldiers.  (See (Woodruff, 1986), (Yeh & Wickens, 

1998), and (Ozkaptan, 1979).)  The choice of participants thus reflected the nature of the 

study. 
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One consequence of using military personnel as participants is that it has the 

potential to influence the results.  On one hand, participation may be coerced, leading to 

half-hearted completion of the task.  Since the participants in the aforementioned studies 

participated in the experiment while performing official military duties, the assumptions 

of volunteer participation and informed consent may not be thoroughly valid.  On the 

other hand, the experimenter’s rank or branch of service may inadvertently influence the 

participant’s perception of the study’s importance or applicability.  Nonetheless, these 

studies in no way appeared to be such that Soldiers would have objected. 

 The choice of participants in the current study reflected the work of previous 

false-positive studies.  All were military students or faculty at the Naval Postgraduate 

School in Monterey, California.  With ages between 27 and 39, these participants had the 

varied backgrounds and experiences necessary to represent the general military 

population represented in combat models.  Collection of data from participants was 

conducted with the presumption of professional duty performance.  The experiment 

received the approval of NPS’ Institutional Review Board.  Participants were volunteers, 

were naïve to the specific objectives of the study, and had read and signed a statement 

acknowledging their informed consent (Appendix B) prior to the start of experimental 

procedures. 

2. Equipment 

 Early false-positive detection experiments made use of pencil-and-paper manual 

responses.  Recent technological developments have “sparked a renewed interest” into 

the study of eye movements.  Due to “more accurate and robust stationary eye trackers” 

and computer graphics technology “enabling presentation of full color scene images 

under precisely controlled conditions… the study of gaze control in scenes has recently 

experienced a rebirth” (Henderson, 2003).  It is not surprising, then, to find that the most 

recent studies involving false-positive detections make great use of eye-tracking systems.   

 Current eye-tracking systems use the same general principles to measure a 

participant’s gaze.  By directing infrared light into the eye, it is possible to measure the 

distance between its reflection off of the cornea and the center of the pupil.  Recording 

such measurements at known points effectively calibrates the system.  The participant is 
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then free to direct his gaze toward the intended scene.  Early eye-tracking equipment 

required immobilization of the participant’s head with the use of a chin rest and temple 

clamps (Mannan et al., 1997).  Subsequent versions removed the need for such unnatural 

restrictions by incorporating hardware and software that measured and accounted for 

head movement.  Researchers have made great use of these eye tracking systems in 

recent years.  (See (Reddi & Carpenter, 2000), (Henderson, 2003), (Martens, 2004), and 

(Martens & Fox, 2007).)  Still, this sort of apparatus required cumbersome and error-

prone equipment to be placed on and near the participant. 

 The most recent commercially available eye-tracking equipment employs the 

same general technology, but places no hardware on the participant.  The system obtains 

the required information by placing two cameras near the intended scene or image and 

directing them at the participant’s face.  Image parallax produces slightly different facial 

images.  By resolving the differences between these images, the software measures and 

calculates the participant’s point of gaze (FaceLab 4, 2006). 

 Equally important to the accurate eye-tracking of natural human movements is the 

display of quality images.  While early target detection experiments made use of typed 

text, drawings, or photographs, more recent experiments have used computer-generated 

images, video, and first-person interactive games.  As mentioned earlier, the use of digital 

imagery can enable the more precise control of potentially independent variables, thereby 

removing what could otherwise significantly confound the data.  The most recent studies 

have taken full advantage of this capability.  These researchers displayed their full-color 

computer-generated stimuli on high-resolution computer screens or projections.  (See 

(Correia, 2005), (Jones, 2006), and (Martens & Fox, 2007).) 

 In addition to recording the participant’s gaze, there must be some means of 

recording the participant’s response to the stimulus.  Just as it is necessary to choose an 

appropriate set of participants, it is necessary to choose an appropriate method of 

response.  It must not be obtrusive, demand a great amount of learning, or require undue 

familiarization.  Ideally, the participant’s response is intuitive, unambiguous, and precise.  

The masters theses of Correia and Jones describe their respective use of standard modern 

office equipment: keyboard and mouse, as in (Correia, 2005) and (Jones, 2006).  They 
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recognized that the typical American Soldier is very familiar with common computer 

equipment, and that requiring a simple “click” or press of a button is almost a second-

nature task. 

 To assist in building upon the body of eye-tracking knowledge, the choice of 

equipment for this eye-tracking experiment must incorporate the knowledge gained from 

previous studies.  By recording eye movement with unobtrusive equipment, presenting 

carefully crafted and high-resolution color images presented on high-quality display 

screens, and recording participants’ responses in a way that does not unduly influence eye 

movements will provide the most representative target detection data possible. 

3. Stimuli 

 Previous experiments employed a wide variety of stimuli in attempts to learn 

about and model human behavior.  In most cases, accuracy (hit rate) and time until 

required response were the dependent variables.  While these provided the information 

necessary for their particular purposes, such studies often failed to record the precise type 

of error (that is, whether an error was a miss or a false alarm).  The method of data 

collection thereby lost information that would otherwise shed light on the subject of false 

positive detections.  Nonetheless, methods employed in previous studies are instructive in 

the design of the current study. 

 Whether making use of photographs or computer-generated imagery, a common 

theme among stimuli used in target detection studies is the presentation of “natural-

looking” scenes.  Capturing target detection and eye movement characteristics of people 

while looking at abstract or nonsensical images would hardly be expected to help 

improve combat models.  Thus, developing imagery that will help elicit appropriate 

responses from participants is of prime importance. 

 Experimenters used stimuli that were appropriate to the aims of their particular 

studies.  While investigating the target detecting characteristics of Army helicopter pilots, 

Ozkaptan presented still images representing in-flight detection of “a single 20-foot 

military tank in various field locations” (Ozkaptan, 1979).  Yeh displayed various 

military targets in hilly terrain, having artificially adjusted the intensity of the targets to 

maintain similar contrast ratios among scenes (Yeh & Wickens, 1998).  More generally, 
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Mannan sought greater understanding of eye fixations by presenting multiple images of 

“natural landscapes, buildings, vehicles, and human figures and faces” while varying the 

level of image quality (Mannan et al., 1997).  Lastly, research by Henderson emphasizes 

not only the natural development of an artificially developed scene, but also the natural 

placement of the target.  He notes that both factors are important because even the first 

fixation “provide[s] important information about where a particular object is likely to be 

found” (Henderson, 2003).  From these observations it is clear that the stimulus set must 

be carefully chosen and developed. 

 The most recent target-detection research conducted at NPS is discussed in the 

masters theses by Correia and Jones.  Both used imagery based on the Delta 3D open-

source simulation engine and developed by the MOVES Institute.  The scenes are still 

images containing a single human-like figure in urban and rural environments.  (A few 

scenes did not contain a target.)  They were able to vary several important scene and 

target characteristics, such as figure position and orientation, level of obscuration (smoke 

or fog), and time of day.  (See (Correia, 2005) and (Jones, 2006).) 

4. Instructions 

 As with all experimental situations involving human participants, the instructions 

given to participants can have significant effects on performance.  Consequently, the 

resulting body of data may contain a large amount of what would be otherwise avoidable 

variance.  Most researchers attempt to remove this source of variability by delivering 

instructions to each participant in the same manner, such as through written or videotaped 

instructions. 

 The complexity of instructions in an experiment naturally depends on many 

factors, especially the objectives of the experiment, the stimuli, and the means of 

recording the data regarding the dependent variables.  For some experiments in target 

detection, the instructions were very simple.  For example, the experiment by Martens 

instructed participants to simply behave “as in real life” (Martens & Fox, 2007).  Since 

the experiment involved a vehicle driving task that replicated daily activities, this sort of 

broad approach was appropriate.  Other experiments included instructions that were quite 

broad.  In a study of fixations on still images, Mannan instructed observers to “examine 
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the images as carefully as possible in order to answer unspecified questions about them” 

(Mannan et al., 1997).  And while the goals of experiments by Correia and Jones were to 

investigate detections of human-like targets, the language they used in their instructions 

to participants was vague in that they only implied the presence or absence of a target in 

each scene.  (See (Correia, 2005) and (Jones, 2006).) 

 Providing guidance to participants in a target detection task is critical because all 

observers bring their own biases to the target detection situation.  Left without influence, 

the observer simply decides whether to emphasize either speed or accuracy.  The 

Woodruff study, which sought to relate search performance and observer expectations, 

urged rapid target detection and instructed participants to respond when “50% sure there 

is a target where you are looking... then immediately continue searching for other targets” 

(Woodruff, 1986).  Alternatively, other studies placed greater importance on responding 

correctly.  When the task is to respond as accurately as possible, the times from the 

presentation of the target until the participant’s response are often not even recorded 

(Martens, 2004).  In an effort to discourage participants from guessing at target locations, 

Jones went so far as to explicitly inform them that the “experiment does not take time 

into consideration” (Jones, 2006). 

While encouraging either accurate or speedy responses is acceptable in 

experimental situations, such restrictions are unrealistic in most real-world situations.  

Whether inspecting products for deficiencies on an assembly line or searching for enemy 

combatants in a high-intensity combat zone, accuracy and speed both are important 

attributes.  As discussed earlier, Signal Detection Theory reveals that simultaneously 

achieving both of these objectives is highly improbable.  Nonetheless, striving for both 

objectives is, in most situations, both encouraged and expected.  While researching the 

influence of urgency on decision time, Reddi and Carpenter designed an experiment with 

two such conditions.  They instructed participants to either “move at a comfortable pace 

and be as accurate in responses as possible” or “respond as rapidly as possible, worrying 

less about making mistakes.”  At the end of the study, the researchers concluded that 

“instructing subjects to respond either more carefully or more hastily is equivalent to 

altering the threshold…at which a response is initiated” (Reddi & Carpenter, 2000).  
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Ozkaptan conducted an experiment with similar instructions, with an additional ‘neutral’ 

condition.  Each instructional set contained verbiage that enabled the participant to more 

readily accept the instructional bias.  He concluded that “instructional set is an important 

determinant of performance during target acquisition with respect to reaction time and the 

number of hits” (Ozkaptan, 1979).  Even very similar studies employ these opposing 

strategies.  While Correia instructed participants to find the target “as quickly as possible, 

but take all the time needed” (Correia, 2005), Jones instructed participants to “be as 

accurate as you can, but be sure you see or don’t see the character before taking action” 

(Jones, 2006).  At the very least, instructing participants to respond either accurately or 

quickly is equivalent to manipulating an independent variable. 

 At the most fundamental level, instructions are given to influence responses in a 

particular way.  Experimenters develop instructions with the intention of conforming 

responses to within intended bounds, making subsequent data analysis tractable.  As a 

result, the participant develops expectations that affect subsequent responses to stimuli.  

In a study involving theoretically trained and untrained observers, Nieman et al found 

that accuracy of judgment decreases when theoretical expectations are violated (Nieman, 

Roberts, & Kantner, 1983).  The participant’s expectancy was a result of formal 

instruction prior to presentation of stimuli.  Similarly, the experiment conducted by Yeh 

demonstrated that expectancies improve search performance when a target is present, but 

inhibit search performance when no target is present (Yeh & Wickens, 1998).  Here, 

expectancy was the result of visual cueing throughout the session.  Pavel recognized that 

“change in sensitivity depend on the attentional instructions as well as on the complexity 

of the tasks” (Pavel, 1987).  Regardless of the manner of developing expectancy, the 

mindset of the participant as manipulated by the experimenter clearly influenced results. 

 Various studies have shown how expectation yields levels of responses.  While 

the previously mentioned studies describe generally discrete response differences, other 

studies reveal that expectancy can influence response in a more continuous manner.  In 

one experiment, See et al gave participants of four groups varying levels of “probability 

of signal occurrence they would encounter during the session.”  She found that “bias was 

most conservative at a probability of .05 and became progressively more lenient as the 
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probability of signal occurrence increased to .75” (See et al., 1997).  Thus, a participant is 

more likely to respond to a stimulus when he or she already expects it to be there.  While 

See’s study dealt with the presence and absence of targets, Pavel demonstrated that the 

expected location of a target influences its detection.  He concluded that “expecting a 

stimulus at a particular location enhanced perceptual sensitivity for that location,” and 

that such sensitivity decreased as the target’s distance from the expected location 

increased (Pavel, 1987). 

 As discussed earlier, one of the most intuitive means of influencing target 

detection bias in a combat situation is to vary the implied ‘supply’ of accurate target 

detection responses.  An observer who seeks to maximize the number of hit targets will 

respond to stimuli in a way that appropriately reflects such a limitation. 

5. Procedures 

 The experimental procedures used in target detection and eye tracking research 

vary widely.  As with the other aspects previously discussed, the chosen procedures 

reflected the intent of the overall study.  The choice of equipment generally appeared to 

have the greatest influence in this regard. 

 The studies by Correia and Jones are those which are most similar to the current 

effort.  To achieve consistency of data, the experimenters read scripted instructions 

before each participant’s session.  They also conducted a brief practice session that 

enabled the participant to become familiar with the laboratory environment, the general 

format of the stimulus, and the equipment.  Having prepared each participant in the same 

manner, they then presented the stimuli and recorded results.  While most scenes 

contained a single target, some scenes intentionally did not.  The sequence of images was 

identical for all participants, and all participants were permitted to proceed at their own 

pace.  Following completion of the formal data collection, the experimenters asked 

participants to complete a brief questionnaire. 

 With regard to image sequence and exposure time, earlier experimenters used 

different approaches.  The images in the Mannan experiment were briefly displayed for 

only three seconds and in a random order.  Additionally, the experimenters presented a 

central fixation target “which constrained eye movements to start at the center of the 
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screen” (Mannan et al., 1997).  They then presented the next image 60 ms after removing 

the central fixation target.  While Ozkaptan also presented scenes with and without 

targets, he set the exposure time at 30 seconds (Ozkaptan, 1979).  Varying exposure time 

is one way to influence the participant’s reaction to each stimulus.  Some researchers do 

so as a means of manipulating an independent variable.  Random presentation of images 

serves to counterbalance the effects of learning that may take place as the experimental 

session progresses. 

E. IMPLICATIONS AND HYPOTHESES 

Any meaningful attempt at investigating target detections must adapt previous 

studies to the particular population of interest.  Since current doctrinal approaches to 

target detections imply preference of false alarms over missed targets, the methods of 

representing false alarms in combat models ought to be more thorough and robust.  As 

such, the following laboratory experiment builds upon previous target detection studies 

by investigating whether false alarm rates decrease as observer experience increases, as 

task instructions become less restrictive, and as target salience increases.  Based on the 

literature discussed above, the following hypotheses were proposed: Hypothesis #1) The 

rate of false positive detections decreases among those with high levels of target 

detection training and experience; Hypothesis #2) The rate of false positive detections 

increases when detection responses are less restrained; Hypothesis #3) The rate of false 

positive detections decreases when searchers can more easily detect targets. 

Whether the goal of a particular combat model is to train and develop its users or 

to shed light on the complex nature of modern warfare, the model must accurately reflect 

the detections of targets.  As discussed previously, combat models often implicitly ignore 

the possibility of entities generating correct rejections and false positives.  The next 

chapter details the researcher’s experimental methodology.  By recording participants’ 

hits, misses, correct rejections, and false alarms in target detection situations similar to 

those in a simulated environment, programmers will be better able to improve 

tomorrow’s combat models. 
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III. METHOD 

A. PARTICIPANTS 

In this study, 16 students at the U.S. Naval Postgraduate School were the 

‘experimental units’ and were evenly ‘blocked’ according to levels of experience.  

‘Experience’ in this study referred to military target detection training, advanced infantry 

training, and experience in ground combat or convoy operations.  Voluntary completion 

of a questionnaire (Appendix A) screened these military officers based on experience.  

Gathering these responses and subjectively arranging them from most experienced to 

least experienced revealed a wide breadth of experience among participants.  Those 

candidates without infantry training or experiences were considered to be inexperienced.  

Those having completed over 100 urban combat patrols or convoys were considered to be 

experienced.  Those who had only some infantry training or experience and could not be 

easily classified were not selected for further participation. 

The sixteen participants represented all branches of the United States Department 

of Defense (10 Army, 1 Navy, 3 Marine Corps, 2 Air Force).  All but one was male, and 

exactly half had received surgery to correct visual deficiencies.  The average age of 

participants was 34.1 years (standard deviation 3.5), and the average years of 

commissioned service was 11.7 (standard deviation 3.7).  All participants reported 

playing first-person shooter video games less often than once per month (the lowest 

response level). 

Prior to data collection, the experimenter ensured that each participant had natural 

or corrected visual acuity of at least 20/40 and was not color blind.  Covering one eye, 

participants read aloud the smallest line possible from a standard Snellen eye-exam chart 

on a wall twenty feet away.  Participants who could accurately read text corresponding to 

at least 20/40 vision with both eyes independently were considered able to proceed.  

Admittedly, this approach is far from truly diagnosing a participant’s precise visual 

acuity.  Nonetheless, the experimenter gained confidence that the observer could 



 

effectively identify small features on the stimuli.  Figure 2 is a replica of the Snellen chart 

used to assess each participant’s visual acuity. 

 

 

Figure 2.   Sample Snellen chart.  [From Wikipedia, February 2008] 

 
Normal discrimination of colors is important to effective target detection.  

Although various means exist to detect and classify color blindness, the Ishihara tests are 

recognized as an expedient way to broadly assess deficiencies.  The experimenters 

presented the color discrimination slide in the “Optec 2000 Vision Tester – Industrial 

Model” and had participants read aloud the number clearly contained in six separate 

Ishihara images.  For the purposes of this experiment, accurate identification of the 

number in the first five images (the sixth did not contain a number visible to those with 

normal color vision) provided sufficient reason to declare the observer not color blind.  

Figure 3 is similar to the images used in the test for color-blindness. 
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Figure 3.   Sample from an Ishihara test.  [From Wikipedia, December 2007] 

 

B. EQUIPMENT 

 The eye-tracking equipment used in the experiment was FaceLab 4, a product of 

Australia-based Seeing Machines, Ltd.  As a “passive measuring device” that employs 

table-mounted cameras to capture and analyze the characteristics of a participant’s face, 

FaceLab is nonintrusive and “enables the user to work as they usually would” (FaceLab 

4, 2006).  This system allows participants to move away from and return to the 

experimental area without requiring recalibration.  Other eye-tracking systems require the 

participant to wear bulky headgear which holds various lenses, cameras, and wires.  Such 

apparatus generally interferes with natural movement and encourages the experimenter to 

design the trials such that rest breaks are not included.  This system permitted recording 

of the participant’s gaze on a computer monitor with an accuracy of approximately one 

degree error. 

 The stimuli were presented on a 24” (measured diagonally) Dell flat screen 

computer monitor with 1920x1200 resolution.  The window-less experiment room was 

dark except for the indirect glow created by the laptop computer administering the 

FaceLab equipment.  This laptop was positioned such that it did not produce glare or 

excessive reflection onto the participants. 
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 In addition to eye movements, participants responded to the stimuli with hand 

movements.  Participants kept one hand on a standard two-button computer mouse and 

the other on a standard computer keyboard.  With the mouse they moved a white 

arrowhead-shaped cursor on the screen to the location of a suspected target and left-

clicked upon it.  Participants did this for all targets detected in each scene.  Upon 

completion of a scene’s search the participant proceeded to the subsequent scene by 

pressing the Enter key. 

C. STIMULI 

The stimulus package used in this target detection research was the result of a 

collaborative effort.  Mr. Michael Dunhour developed the basic structure of the scene-

generating software with the use of Delta-3D, an open-source computer game 

development engine.  Mr. Daniel McCue developed the software that enabled the 

placement of targets, the adjustment of scene conditions, and the recording of mouse-

click data.  Since previous studies tend to highlight the importance of having a large 

number of target detection opportunities, the experimenter used these products to develop 

24 unique scenes. 

 Having multiple targets in each scene was an important factor in this analysis.  

Previous target detection studies rely primarily on “yes-no” or “force choice” tasks.  This 

study took advantage of the most recent eye-tracking technology to obtain detailed 

information about the participant’s behavior while looking for an unknown number of 

targets in multiple scenes. 

The experimenter designed all scenes with at least one target per scene.  

Presenting even one scene without any targets would have the potential to influence 

future behavior away from responding with mouse clicks.  Regardless of the participant’s 

bias, it would effectively make him require a greater amount of information before 

deciding on the presence of any target.  This would cause the participant to be less 

willing to respond to ambiguous targets in subsequent scenes.  Since the goal of this 

research was to examine errors in target detection, it was important to encourage, rather 

than discourage, target detection events. 
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The experimenter also designed the stimulus package so as not to inadvertently 

bias the participant.  While there is no upper bound on the number of possible targets per 

scene, the creation of each scene must nonetheless reflected a balance between containing 

many targets and enabling accurate capture of visual and manual responses.  The gaze-

tracking limitations of the eye tracking system thus limit the maximum number of targets 

per scene.  As a result, the practical limit to the number of targets in scenes was six. 

In the context of searching for multiple targets in a combat situation, the 

observer’s sensitivity is the product of multiple factors.  Such factors include the amount 

of the target within view of the observer, which part of the target is observable, the 

brightness of the target itself, and the contrast of the target to objects in the foreground 

and background.  The experimenter developed and conducted a small-scale pilot study 

designed to determine the best ways to manipulate the target saliency, to develop 

appropriate biasing instructions, and to refine experimental procedures. 

The pilot study consisted of four participants viewing 27 unique scenes, each 

containing between one and six targets.  Two of the participants received instructions 

intended to result in high biases while the others received instructions intended to convey 

low biases.  Participants searched for targets and signaled detection by moving a mouse 

cursor to the suspected target and clicking once.  Analysis of target detection results at 

the conclusion of the pilot study revealed scene and target characteristics obviously that 

obviously correlated with trends in hits, misses, and false alarms.   

The experimenter then created and developed a set of scenes that balanced not 

only the total number of easy and hard scenes but also the total number of targets 

contained within them.  While displaying 24 scenes each with six targets would produce 

a many target detection opportunities, it would also influence the participant’s target 

detection strategy.  Presenting scenes containing up to six targets while favoring one 

format (that is, having most scenes contain one or five or six targets) would likewise 

inappropriately bias the participant.  Randomizing the presentation of an equal number of 

scenes containing a given number of targets avoided this potentially confounding 

influence.  For this reason, the stimulus package of 24 scenes consisted of one target in 

each of two easy and two hard scenes, two targets in each of two easy and two hard 
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scenes, and so on up to six targets in each of two easy and two hard scenes.  Twelve easy 

scenes thus contained a total of 42 targets, as did twelve hard scenes.  By the conclusion 

of the stimulus package each participant had been presented 84 targets. 

D. INSTRUCTIONS 

Having categorized the experience level of participants, the next step was to 

randomly assign them to groupings of high and low biases.  Describing the experimental 

session in terms of a tactical situation provided the participant with an intended mindset.  

The precise instructions given to participants thus depended on the participant’s 

experimental group.  One group received an instruction set designed to elicit responses 

arising from a high bias condition, while the other group received an instruction set 

intended to influence participants toward a lower bias.  Participants remained unaware of 

the different instructions, but all participants received the same information about the 

general purpose of the study, the equipment to be used, and the general format of the 

stimuli.  Copies of the written instructions given to each participant are contained in 

Appendices D and E. 

A high bias condition is one in which the participant adopts a characteristically 

‘conservative’ approach to responses, while a low bias condition is generally more ‘risky’ 

in responses.  In order to accept fewer false alarms an observer with a high bias 

effectively moves his criterion further to the right on the plot of the two Gaussian 

distributions (but also fewer hits).  Given an observer’s sensitivity, increasing the hit rate 

simultaneously increases the false alarm rate.  An observer with a low bias behaves in an 

opposite manner: he moves his criterion further to the left, thereby allowing more hits but 

also accepting more false alarms. 

Participants assigned to the low bias condition were given very liberal (afterwards 

labeled, “permissive”) firing instructions.  They were told that only enemy combatants 

were within the scenes and that the current tactical situation and rules of engagement did 

not require them to be certain of a target’s identity before firing.  They were specifically 

not limited in the number of ‘shots’ allowed per scene, but were instructed to not take 

 

 



 

‘wild shots.’  There was no other mention of penalties for either misses or false alarms.  

Low-bias participants were therefore expected to have relatively high hit rates and high 

false alarm rates. 

Participants assigned to the high bias condition were given more conservative 

(afterwards labeled, “restrictive”) firing instructions.  Their instructions allotted only a 

limited, but varying and unknown, number of shots per scene.  To ensure that participants 

had a rather high confidence of a target’s identity, they were told that the number of 

recordable shots in a scene equaled the number of targets actually in that scene.  They 

were also notified that any subsequent shots would not be recorded.  (Naturally, 

experimenters recorded all shots, not just the ‘recordable’ shots.)  Keeping participants 

unaware of the true number of targets in any given scene discouraged guessing and 

encouraged them to require a high degree of confidence before responding with a mouse 

click.  High-bias participants were therefore expected to have lower hit rates and lower 

false alarm rates. 

For each combination of experience level and type of instruction, the participant 

was presented a stimulus package that contained targets both easy and hard to detect.  

Figure 4 presents the various combinations of experience, instruction, and ease of 

detection. 

 

 

Figure 4.   Experimental structure. 
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E. PROCEDURES 

 The experiment began with orienting the participants to the laboratory and 

obtaining their informed consent to take part in the experiment (Appendix B).  

Participants completed a brief pre-trial questionnaire (Appendix C) and simple tests for 

visual acuity and color blindness.  Participants read the assigned instructional set 

(Appendices D and E) and verbally answered scripted questions about specific details 

contained in the instructions.  Experimenters then calibrated the FaceLab system to the 

participant and conducted a familiarization and practice session.  This practice session 

consisted of three short target detection scenarios (three scenes each) immediately 

followed by a report of the participant’s performance.  In this manner, participants were 

further influenced toward accepting the intended biasing condition.  Experimenters asked 

scripted questions appropriate to the given biasing instructions and specifically confirmed 

the participant’s readiness before proceeding to the main trial sequence. 

An equal number of participants were classified as having either high experience 

or low experience.  Within these experience groups an equal number of participants were 

then assigned to either a high bias or low bias condition and given corresponding 

instructions.  Although each participant was easily able to accurately describe his own 

level of experience, he was ignorant of the intentional differences between the levels of 

target detection difficulty and the differing instructional conditions. 

Researchers presented the same 24 target detection scenes to all participants.  The 

stimulus package included an equal number of easy and hard scenes.  These scenes were 

randomly distributed throughout the stimulus package for each participant.  After the 

training sessions and immediately prior to data collection, experimenters reminded the 

participant of the unchanging natures of instructions and procedures.  Participants then 

completed, without interruption, the target detection task in the 24 scenes of the stimulus 

package.  Participants were allowed to search each scene for up to 15 seconds, but were 

permitted to proceed to the subsequent scene at any time.  Afterwards, all participants 

appeared to readily understand the importance of not compromising future data collection 

efforts by discussing the experimental session with others. 
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IV. RESULTS AND ANALYSIS 

The data recorded from each participant during the stimulus presentation included 

the number of hit targets, the number of missed targets, and the number of false positive 

detections.  The FaceLab eye-tracking system also recorded the location of the 

participant’s gaze throughout the data-collection session.  The system captured and 

recorded the x- and y-positions of the observer’s gaze on the stimulus display screen at a 

rate of 60 hertz. 

A participant’s hit rate is dependent on the number of hits and the number of total 

targets presented.  As the designer of the stimulus package, the experimenter knew 

precisely how many targets it contained.  Determining whether a participant’s response 

was a hit, miss, or false alarm was then a relatively simple manner.  As a result, the hit 

rate was easy to obtain. 

The determination of a participant’s false alarm rate, however, was slightly more 

complicated.  As written in Chapter II, the false alarm rate is the number of false alarms 

divided by the number of noise trials.  That is, it is the quotient of the number of false 

alarms divided by the total number of false alarms plus correct rejections.  The 

participant’s actions with the mouse do not capture the number of correct rejections, and 

since all scenes had at least one target, the number of ‘noise alone’ scenes was zero.  In 

situations of multiple targets per scene, the number of noise trials becomes dependent on 

the participant’s gaze.  Correct rejections are thus fixations on non-targets followed by a 

decision to not click upon the object of the fixation. 

The data obtained via the FaceLab system permitted calculation of a participant’s 

fixations in each scene.  There is no widely accepted definition of either fixations or 

saccades in terms of distance, angles, or other objective parameters.  For the purposes of 

this study, saccades were presumed to have begun when the observer’s point of gaze 

moved more than the length of four pixels between consecutive recordings.  Having 

defined saccades, fixations naturally followed.  Overlaying the set of resulting fixations 

(numbered sequentially) onto its corresponding stimulus scene enabled the distillation of 
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these calculated fixations into correct rejections according to a set of ‘rules.’  In order for 

a fixation to be counted as a correct rejection, it must have met all of the following 

conditions: 

• A correct rejection is a fixation farther than approximately one degree 
visual angle from any target 

• A correct rejection is a fixation farther than one degree visual angle from 
the location of any mouse click 

• A single correct rejection is recorded when multiple fixations appear in 
sequence within approximately one degree visual angle 

Given the maximum 15 seconds permitted to search each scene, these analytical 

conditions result in reasonable numbers of fixations and correct rejections for each scene 

and for each participant. 

A. RAW DATA 

Experimental design and data collection permitted calculation of each 

participant’s hit rate and false alarm rate.  From these two terms come individual 

measures of each participant’s measures of sensitivity and criterion.  All such values were 

separated by performance on ‘easy scenes’ and ‘hard scenes.’  Tables 1 and 2 display 

each participant’s individual hit rates and false alarm rates, respectively.  Figures 5 and 6 

graphically display the same information. 

 

 



 

Hit Rate
Permissive Restrictive Permissive Restrictive

32 0.976 31 0.810 21 0.952 22 0.905
37 0.976 36 0.952 33 0.929 34 0.905
42 0.905 43 0.929 35 0.952 44 0.929
46 0.857 45 0.952 52 0.952 51 0.952

Mean 0.929 0.911 0.946 0.923
StDev 0.058 0.068 0.012 0.023

32 0.714 31 0.429 21 0.714 22 0.619
37 0.714 36 0.738 33 0.524 34 0.595
42 0.476 43 0.619 35 0.571 44 0.714
46 0.643 45 0.500 52 0.643 51 0.690

Mean 0.637 0.571 0.613 0.655
StDev 0.112 0.136 0.083 0.057
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Table 1.   Hit rates for each participant in easy and hard scenes. 

 

 
Figure 5.   Plots of hit rates on easy and hard scenes 
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False Alarm Rate
Permissive Restrictive Permissive Restrictive

32 0.056 31 0.024 21 0.092 22 0.008
37 0.045 36 0.016 33 0.058 34 0.010
42 0.029 43 0.017 35 0.012 44 0.022
46 0.096 45 0.022 52 0.060 51 0.010

Mean 0.057 0.019 0.056 0.013
StDev 0.029 0.004 0.033 0.006

32 0.035 31 0.059 21 0.094 22 0.037
37 0.078 36 0.047 33 0.092 34 0.026
42 0.022 43 0.022 35 0.035 44 0.038
46 0.145 45 0.037 52 0.070 51 0.030

Mean 0.070 0.041 0.073 0.033
StDev 0.055 0.016 0.027 0.006
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Table 2.   False alarm rates for each participant in easy and hard scenes. 

 

 
Figure 6.   Plot of false alarm rates on easy and hard scenes. 
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Initial analysis of the hit rates of the 16 participants shows that the mean hit rates 

with respect to easy scenes falls between 0.91 and 0.95, depending on the group’s 

experience and set of instructions.  This seemingly small range of means betrays a 

relatively wide range of standard deviations: 0.01 to 0.07.  Conversely, the ranges of 

means and standard deviations for hit rates in hard scenes are larger and somewhat wider 

(mean range: 0.57 to 0.66, standard deviation range: 0.06 to 0.14).  Regardless of the 

differences between easy and hard scenes, the overall variability of standard deviations 

effectively shows that an assumption of equal variances in this raw data is untenable.  

Review of the false alarm rates showed relatively wide ranges of means in both easy 

scenes (0.01 to 0.06) and hard scenes (0.03 to 0.07).  Similarly with respect to false alarm 

rates, the ranges of standard deviations were quite broad in both easy scenes (0.004 to 

0.033) and hard scenes (0.006 to 0.055).  Analyses of variance (ANOVAs) revealed 

whether observer experience, scene difficulty, and task instructions significantly 

influenced the hit rates, false alarm rates, sensitivity, and bias.  All subsequent plots and 

ANOVA tables came from Minitab® 15.1.1.0, 2007. 

B. ANALYSIS OF HIT RATES 

As noted above, the variability of the raw data cast doubt upon assumptions of 

normality and inhibited the use of ANOVA.  Transforming all hit rates by the logit 

function permitted further analysis by strengthening the assumption of normality and 

making variances approximately equal.  The transformation brought central data points 

closer to the center line and brought the errant tail value into the 95% confidence interval.  

Figure 7 shows the normality probability plots of hit rates before and after the 

transformation. 
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Figure 7.   Normal probability plots of Hit Rate and logit(Hit Rate). 

 

With respect to hit rates, the ANOVA table (Table 3) revealed that the only 

significant factor was Difficulty (p-value <0.001).  There were no apparent significant 

two-way or three-way interactions.  As expected (and intended), Difficulty was the only 

significant factor in determining hit rates.  The initial portion of Table 3 lists each factor’s 

type, levels, and values.  This information remained unchanged and will be omitted in 

subsequent ANOVA tables. 

 

 

 

 

 

 

 

 
 38



 

General Linear Model: logit(Hit Rate) 
 
Factor                                 Type  Levels   Values____________ 
Experience                            fixed      2   High, Low 
Instructions                          fixed      2   Permissive, Restrictive 
Difficulty                            fixed      2   Easy, Hard 
Participant(Experience Instructions)  random    16   21, 22, 31, 32, 33, 34, 
                      35, 36, 37, 42, 43, 44, 
           45, 46, 51, 52  
Analysis of Variance for logit(Hit Rate) 
 
Source                                DF   Seq SS   Seq MS       F  P____ 
Experience                             1   0.0352   0.0352    0.07  0.792 
Instructions                           1   0.3431   0.3431    0.71  0.416 
Experience*Instructions                1   0.0990   0.0990    0.20  0.659 
Participan 0.013
Difficulty                             1  38.3353  38.3353  311.14  0.000 

t(Experience Instructions)  12   5.8022   0.4835    3.92   

Experience*Difficulty                  1   0.0183   0.0183    0.15  0.707 
Instructions*Difficulty                1   0.2014   0.2014    1.63  0.225 
Experience*Instructions*Difficulty     1   0.1006   0.1006    0.82  0.384 
Error                                 12   1.4785   0.1232 
Total                                 31  46.4135 
 

Table 3.   ANOVA of logit(Hit Rate) 

 
A plot of the main effects (Figure 8) shows how scene Difficulty contributed most 

to an observer’s hit rate while Experience and Instructions contributed very little. 

 
 

LowHigh

2.5

2.0

1.5

1.0

0.5

RestrictivePermissive

HardEasy

2.5

2.0

1.5

1.0

0.5

Experience

M
ea

n

Instructions

Difficulty

Main Effects Plot for logit(Hit Rate)
Fitted Means

 

Figure 8.   Main effects plot for logit(Hit Rate). 
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Similarly, a plot of the factor interactions (Figure 9) shows that Difficulty 

contributed most to hit rates and that there was no evidence of any significant factor 

interactions. 
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Figure 9.   Interaction plot for logit(Hit Rate).  

 
Observer Experience was not shown to significantly affect observers’ hit rates.   

Whereas each combination of Experience, Instructions, and Difficulty had four 

replications, removing Experience from the plot of individual hit rates (Figure 10) 

consolidated data across this factor.  As a result, there were then essentially eight 

replications of each combination of scene Difficulty and task Instruction.  The means and 

variances of the raw hit rates appear little changed.  The lines connecting the means still 

have approximately the same slopes and intercepts, indicating that Instructions likewise 

had no significant affect on hit rates. 
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Figure 10.   Collapsed individual value plot of hit rates. 

 

C. ANALYSIS OF FALSE ALARM RATES 

Similar to the analysis and treatment of raw hit rates, transforming raw false alarm 

rates with the logit function likewise permitted further analysis by strengthening the 

assumption of normality and making variances approximately equal.  Figure 11 shows 

the normality probability plots of false alarm rates before and after the transformation.  

As with hit rates, the transformation brought central data points much closer to the 

normal line and tail values into the 95% confidence interval. 
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Figure 11.   Normal probability plots of False Alarm Rate and logit (False Alarm Rate). 

 
Analysis of the false alarm rates (Table 4) revealed very different findings.  The 

factors that were significant in affecting false alarm rates were Instructions (p-value 

0.006), Difficulty (p-value <0.001) and the two-way interaction between Instructions and 

Difficulty (p-value 0.018).   

 

General Linear Model: logit (False Alarm Rate) 
 
Analysis of Variance for logit(FA Rate) 
 
Source                                DF   Seq SS  Adj MS      F P____ 
Experience  0.551
Instructions                           1   6.3163  6.3163  11.28  0.006 

                           1   0.2105  0.2105   0.38   

Experience*Instructions                1   0.3154  0.3154   0.56  0.467 
Participan 0.003
Difficulty                             1   2.5977  2.5977  24.99  0.000 

t(Experience Instructions)  12   6.7190  0.5599   5.39   

Experience*Difficulty  0.141
Instructions*Difficulty                1   0.7813  0.7813   7.52  0.018 

                1   0.2581  0.2581   2.48   

Experience*Instructions*Difficulty     1   0.0005  0.0005   0.01  0.944 
Error                                 12   1.2475  0.1040 
Total                                 31  18.4464 
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Table 4.   ANOVA of logit(False Alarm Rate) 



 

A plot of the main effects (Figure 12) revealed that task Instructions and scene 

Difficulty both contributed to false alarm rates.   As in the main effects plot for hit rates, 

observer Experience contributed very little to false alarm rates. 
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Figure 12.   Main effects plot for logit(False Alarm Rate). 

 
With respect to false alarm rates, a plot of the factor interactions (Figure 13) 

showed that both Instructions and Difficulty contribute to false alarm rates.  Additionally, 

this plot graphically depicts the significant interaction between Instructions and 

Difficulty. 
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Figure 13.   Interaction plot for logit(False Alarm Rate). 

 
Similar to hit rates, observer Experience was not shown to significantly affect 

false alarm rates.  Removing Experience from the plot of individual hit rates again 

consolidated data so that there were essentially eight replications of each combination of 

scene Difficulty and task Instruction (Figure 14).  The means and variances representing 

the data from each factor combination continue to widely differ. 
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Figure 14.   Collapsed individual value plot of false alarm rates. 

 

D. OTHER ANALYSES 

Having calculated hit rates and false alarm rates from the experimental data, the 

framework of Signal Detection Theory enables a more thorough assessment of observer 

performances by examining sensitivity and bias.   

1. Analysis of Observer Sensitivity 

As written in Chapter II, an observer’s sensitivity is denoted by  and represents 

the difference between the means of two equal-variance Gaussian curves.  It is the 

difference of the inverse of the standard normal distribution at each observed hit rate 

from the inverse of the standard normal distribution at each observed false alarm rate.  

Simply speaking, sensitivity refers to how well an observer can distinguish a signal from 

the noise.  A higher value reflects greater sensitivity.  Table 5 displays each observer’s 

sensitivity. 

ˆ 'd
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d'
Permissive Restrictive Permissive Restrictive

32 3.6 31 2.9 21 3.0 22 3.7
37 3.7 36 3.8 33 3.0 34 3.6
42 3.2 43 3.6 35 3.9 44 3.5
46 2.4 45 3.7 52 2.8 51 3.4

Mean 3.2 3.5 3.2 3.5
StDev 0.6 0.4 0.5 0.1

32 2.4 31 1.4 21 1.9 22 2.1
37 2.0 36 2.3 33 1.4 34 2.2
42 2.0 43 2.3 35 2.0 44 2.3
46 1.4 45 1.8 52 1.6 51 1.9

Mean 1.9 1.9 1.7 2.1
StDev 0.4 0.4 0.3 0.2
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Table 5.   Observer sensitivities.  

Similar to previous analysis, the presence of unequal variances among groups is 

alleviated by transforming the data with the natural logarithm function.  Table 6 contains 

the ANOVA table that shows how, similar to hit rates, the only significant factor was 

scene Difficulty (p-value <0.001).  This was expected, since by design the targets in the 

hard scenes were much better concealed than the targets in the easy scenes. 

 

General Linear Model: d Prime 
 
Analysis of Variance for d Prime 
 
Source                                DF   Seq SS   Seq MS       F  P____ 
Experience                             1   0.0002   0.0002    0.00  0.981 
Instructions                           1   0.5565   0.5565    2.05  0.178 
Experience*Instructions                1   0.1028   0.1028    0.38  0.550 
Participan 0.002
Difficulty                             1  16.2849  16.2849  369.94  0.000 

t(Experience Instructions)  12   3.2566   0.2714    6.17   

Experience*Difficulty                  1   0.0032   0.0032    0.07  0.791 
Instructions*Difficulty                1   0.0238   0.0238    0.54  0.477 
Experience*Instructions*Difficulty     1   0.0566   0.0566    1.29  0.279 
Error                                 12   0.5282   0.0440 
Total                                 31  20.8129 
 

Table 6.   ANOVA of observer sensitivity.  
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The depiction of the main effects plot (Figure 15) displays how scene Difficulty 

contributes to sensitivity more so than do Instructions or Experience. 
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Figure 15.   Main effects plot for observer sensitivity. 

 
A plot of all two-way interactions (Figure 16) again shows that Difficulty has the 

greatest effect, and that there are no significant interactions. 
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Figure 16.   Interaction plot for observer sensitivity. 

 

2. Analysis of Observer Bias 

As written in Chapter II, an observer’s bias is denoted by β  and represents the 

ratio of the heights of the two standard Gaussian density functions at the observer’s 

criterion.  Its present application is as a measure of how much information an observer 

required before responding with a mouse click.  A higher value of bias means that the 

observer required more information before responding.  As a result, such an observer will 

have accumulated fewer hits and fewer false alarms than an observer with a lower bias.  

Table 7 displays each participant’s bias. 
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Bias
Permissive Restrictive Permissive Restrictive

32 -0.7 31 1.6 21 -0.5 22 2.0
37 -0.5 36 0.9 33 0.2 34 1.8
42 0.9 43 1.2 35 1.2 44 1.0
46 0.3 45 0.7 52 -0.7 51 0.1

Mean 0.0 1.1 0.0 1.2
StDev 0.8 0.4 0.8 0.9

32 1.5 31 1.2 21 0.7 22 1.5
37 0.8 36 1.2 33 0.9 34 1.9
42 2.0 43 2.0 35 1.6 44 1.4
46 0.5 45 1.6 52 0.7 51 0.9

Mean 1.2 1.5 1.0 1.4
StDev 0.7 0.4 0.4 0.4
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Table 7.   Observer biases. 

 
Similar to the findings that resulted from analysis of false alarm rates, analysis of 

observer biases (Table 8) shows that task Instructions, scene Difficulty, and the 

interaction between Difficulty and Instructions are the only statistically significant factors 

(with p-values of 0.019, 0.001, and 0.025, respectively). 

 

General Linear Model: Bias  
 
 
Analysis of Variance for Bias 
 
Source                                DF   Seq SS  Seq MS      F      P 
Experience                             1   0.0103  0.0103   0.02  0.899 
Instructions                           1   4.5083  4.5083   7.33  0.019 
Experience*Instructions                1   0.0323  0.0323   0.05  0.822 
Participan 0.026
Difficulty                             1   3.8663  3.8663  20.49  0.001 

t(Experience Instructions)  12   7.3760  0.6147   3.26   

Experience*Difficulty                  1   0.1016  0.1016   0.54  0.477 
Instructions*Difficulty                1   1.2336  1.2336   6.54  0.025 
Experience*Instructions*Difficulty     1   0.0021  0.0021   0.01  0.918 
Error                                 12   2.2647  0.1887 
Total                                 31  19.3951 

Table 8.   ANOVA of observer bias. 

 

 49



 

As shown in the main effects plot (Figure 17), Instructions and Difficulty greatly 

affect bias while Experience does not.  Similarly, the plot of factor interactions (Figure 

18) shows great bias differences arising from differing Instructions and Difficulty, and 

that the only significant interaction was between these two factors. 
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Figure 17.   Main effects plot for observer bias. 
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Figure 18.   Interaction plot for observer bias. 

 
The plot of factor interactions for bias appears quite similar to the plot of factor 

interactions for false alarms because the same factors and interactions are at work in 

much the same ways.  Nonetheless, these sorts of plots do not always appear this way; the 

high degree of similarity in this analysis is a result of the strength the factors and their 

interaction.   
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V. DISCUSSION 

A. HYPOTHESES 

As discussed in Chapter II, observer performances cannot be appropriately 

appraised without knowing hit rates and false alarm rates.  If false alarms are of little 

concern, an observer wishing to maximize hits will achieve his goal by simply 

responding with ‘yes, signal present’ to every trial.  Likewise, if hits are of little concern, 

an observer wishing to minimize false alarms will achieve his goal by simply responding 

with ‘no, signal absent’ to every trial.  As long as there is some uncertainty in the mind of 

the reasonable observer, increasing hit rates will have the associated effect of increasing 

the rate of false alarms.  Only when considering an observer’s hit rate in tandem with his 

false alarm rate can one begin to fully understand his target detection performance. 

Within the two levels of observer experience and the two levels of task 

instructions, and between the two levels of scene difficulty, hit rates were fairly uniform.  

False alarm rates, however, varied greatly within the same experience and instruction 

levels and between easy and hard scenes.  In neither case did experience alone prove to 

be a significantly contributing factor.  Nonetheless, the general uniformity of hit rates in 

this experiment facilitates further assessment of target detection performance.  Analysis 

of the experimental data leads to rejection of Hypothesis #1 (Experience) and failure to 

reject Hypothesis #2 (Task Instructions) and Hypothesis #3 (Scene Difficulty). 

1. Hypothesis #1 (Experience) 

An observer’s experience, as measured by his amount of military target detection 

training or first-hand combat experience, did not prove to be a significant factor in 

determining his rate of false alarms.  In the ANOVA of logit(False Alarm Rate), shown 

in Table 4, the p-value associated with the experience factor alone was 0.551.  Despite 

graphical indications of possibly significant interactions, the p-values associated with all 
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two-way and three-way interactions containing the experience factor likewise proved to 

not be significant.  The experimenter thus rejects Hypothesis #1 (Experience): low 

observer experience did not result in a higher rate of false alarms. 

That Experience did not appear significant in this study could be the result of 

numerous factors.  One possibility is that the task simply did not require the unique skills 

developed while in combat.  There are obvious and extreme differences between a desk-

side computer ‘game’ and the life-and-death situations of a combat patrol or convoy.  

This experiment likely did not evoke the adrenaline, awareness, and intensity that the 

experienced participants probably exhibited while in combat.  Another possibility is that 

the participants in this study presumably had roughly the same amount of experience 

searching for ‘targets’ on a desktop computer.  Every participant had been in uniformed 

service for his or her entire adult life and the nearly universal use of computers in the 

American military may have further leveled the effects of this factor.  Over the years, the 

participants had refined their abilities to find items of interest on computer screens.  

Finally, while we naturally expect the most highly trained and experienced observers to 

be more proficient at a given target detection task than a novice observer, the possibility 

exists that there is truly no significant difference between such groups. 

2. Hypothesis #2 (Task Instructions) 

The set of instructions given to observers clearly appeared as a significant factor 

in influencing false alarm rates.  In the ANOVA of logit(False Alarm Rate), the p-value 

associated with the Instructions factor alone was 0.006.  The steep line connecting the 

fitted means associated with ‘Permissive’ and ‘Restrictive’ instructions in the graphical 

depiction of main effects (Figure 12) highlights the profound impact of this factor.  

Contributing to the great difference is the significant interaction between Instructions and 

Difficulty (p-value 0.018).  The experimenter thus fails to reject Hypothesis #2 (Task 

Instructions): instructions are indeed shown to have great effect on the rate of false 

alarms. 
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The instructions given to participants were designed to elicit greatly differing 

responses while still permitting the possibility of identical target-detection performance.  

Experimenters took great care to develop the written instructions and the training 

scenario so that participants would sufficiently understand and apply the given 

instructions while not unduly constraining natural behavior.  The ‘Permissive’ 

instructions emphasized hits while making no mention of false alarms.  (Indeed, many 

participants asked questions about or made mention of the absence of instructions 

concerning false alarms.  In such instances, the experimenter simply referred them to the 

appropriate portion of the written instructions.)  After the first of three practice sessions, 

most participants given ‘Permissive’ instructions quickly realized how liberal mouse-

clicking increased the number of hit targets.  In order to keep from unequally biasing 

participants, experimenters made no mention of a participant’s false alarms accumulated 

during the practice sessions. 

The ‘Restrictive’ instructions also emphasized hits but required participants to be 

much more judicious in their mouse-click behavior.  Whereas participants given 

‘Permissive’ instructions could click upon a suspected target without a second thought, 

participants given ‘Restrictive’ instructions would seemingly maximize the number of 

hits by requiring more certain information about a suspected target’s identity before 

responding.  These participants thus had to be much more careful as they searched each 

scene and respond to targets that provided an amount of information that exceeded their 

own thresholds of certainty. 

3. Hypothesis #3 (Scene Difficulty) 

The primary purpose of the pilot study was to gain insight into the factors that 

would enable development of a set of stimuli resulting in a large distinction between 

observer performances.  Experimenters then developed the main experiment’s set of 

target detection scenes with the expressed purpose of making ‘easy’ and ‘hard’ scenes.  It 

therefore comes as no surprise that Difficulty significantly influenced false alarms (p-

value <0.001, as shown in Table 4).  The experimenter thus fails to reject Hypothesis #3 

(Scene Difficulty): indeed, more difficult scenes generate higher false alarm rates.   
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B. ADDITIONAL FINDINGS 

1. Factor Interactions 

A review of the mean false alarm rates (Table 2) shows that, regardless of 

whether the observer is experienced or inexperienced, false alarm rates are lowest when 

the scene difficulty is easy and when the observer is given restrictive instructions.  

Conversely, the highest mean false alarm rates resulted when observers given permissive 

instructions examined hard scenes. 

In addition to the significant main effects of Instructions and Difficulty, analysis 

shows that the interaction between these two factors is also significant (p-value 0.018).  

This highly significant interaction between Instructions and Difficulty appeared in the 

difference in magnitude within scene Difficulty and between task Instructions.  That is, 

the effects of permissive and restrictive instructions on easy and hard scenes were more 

than just additive.  On one hand, a typical observer given permissive instructions had 

only a slightly higher false alarm rate on hard scenes than on easy scenes.  On the other 

hand, a typical observer given restrictive instructions had a much higher false alarm rate 

on hard scenes than on easy scenes.  It is important to note that all such differences were 

the result of numerous responses to the same stimuli.  When presented the same set of 

target detection scenes, observers given permissive instructions generated more false 

alarms.  Similarly, regardless of whether the scene was easy or hard, the typical observer 

given permissive instructions responded with more false alarms than the observer given 

restrictive instructions. 

On the interactions plot of logit (False Alarm Rate) in Figure 19, the mean 

logit(False Alarm Rate) is approximately -3.0 for Easy/Permissive and -4.2 for 

Easy/Restrictive.  Converting these factors back to standard false alarm rates by applying 

the appropriate exponential function reveals mean false alarm rates of 0.047 

(Easy/Permissive) and 0.015 (Easy/Restrictive), for an Instruction-induced difference of 

0.032.  On the same plot, the mean logit(False Alarm Rate) is -2.7 for the combination of 

Hard/Permissive and -3.4 for Hard/Restrictive.  Re-converting these values as above 

yields standard mean false alarm rates of 0.060 and 0.036, respectively, for an 



 

Instruction-induced difference of 0.024.  Comparing these differences (0.032 for Easy 

and 0.024 for Hard) reveals a 33% difference in mean false alarm rates due to the 

interaction between Difficulty and Instruction. 
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Figure 19.   Interaction plot of instructions and difficulty for logit(False Alarm Rate). 

2. Performance Comparisons 

As discussed earlier, hits and hit rates were higher on easy scenes while false 

alarms and false alarm rates were higher on hard scenes.  Although these broad 

descriptions confirm intuition, they nonetheless conceal important distinctions.  Since a 

hit rate is the quotient of hits divided by the sum of hits and misses, reporting a hit rate 

alone conceals the effects of each factor.  That is, knowing the numerator and 

denominator provide important information.  The same is true for understanding false 

alarm rates. 

 



 

With regard to easy scenes, the average number of hits by observers given 

permissive instructions (39.4) is nearly identical to that by observers given restrictive 

instructions (38.5).  The same is true with regard to hard scenes: differing instructions 

result in little difference between average numbers of hits (26.2 and 25.8, respectively).  

As a result, the ratios of hits across easy and hard scenes are both approximately equal to 

1.0, as shown in the final column of Table 9.  Figure 20 graphically displays the average 

number of hits for each combination of Difficulty and Instruction, with error bars 

showing one standard deviation. 
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Permissive Restrictive
Instructions

Ratio
Hits 39.4 (1.7) 38.5 (2.0) 1.02
Misses 2.6 (1.7) 3.5 (2.0) 0.74
Hit Rate 0.938 0.917 1.02

Permissive
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Restrictive Ratio
Hits 26.2 (3.9) 25.8 (4.5) 1.02
Misses 15.8 (3.9) 16.2 (4.5) 0.98
Hit Rate 0.624 0.614 1.02H
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Table 9.   Average hits and misses (standard deviations in parentheses). 

 



 

Average Number of Hits

0

5

10

15

20

25

30

35

40

45

Easy/Permissive       Easy/Restrictive               Hard/Permissive        Hard/Restrictive

 
Figure 20.   Average numbers of hits for each difficulty and instruction. 

 
The number of hits on easy scenes is clearly higher than the number of hits on 

hard scenes.  The form of Instructions, whether permissive or restrictive, did not 

significantly affect the number of hits in either type of scene Difficulty.  Within each 

level of Difficulty, the ratio of hits resulting from permissive instructions to hits resulting 

from restrictive instructions is approximately one (Figure 21).  
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Figure 21.   Effects of instructions on hit rates in easy and hard scenes. 

 
In terms of false alarms, the data tell a very different story.  With regard to easy 

scenes, the average number of false alarms by observers given permissive instructions 

(10.4) is nearly 3.5 times that by observers given restrictive instructions (3.0).  Their 

average numbers of correct rejections only slightly differed, resulting in a false alarm rate 

by permissively instructed observers that is more than three times higher than the false 

alarm rate of restricted observers. Table 10 displays the average numbers of false alarms 

and correct rejections.  Figure 22 graphically displays the average number of false alarms 

for each combination of Difficulty and Instruction, with error bars showing one standard 

deviation. 
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Permissive Restrictive Ratio
False Alarms 10.4 (6.0) 3.0 (1.5) 3.46
Correct Rejections 156.4 (30.8) 151.4 (40.1) 1.03
False Alarm Rate 0.062 0.019 3.20

Permissive Restrictive Ratio
False Alarms 13.6 (7.4) 7.0 (2.7) 1.95
Correct Rejections 174.0 (39.2) 162.4 (38.4) 1.07
False Alarm Rate 0.073 0.041 1.76
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Table 10.   Average false alarms and correct rejections (standard deviations in parentheses). 
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Figure 22.   Average numbers of false alarms for each difficulty and instruction. 

 
To a lesser extent, the same is true for observers of hard scenes.  Those given 

permissive instructions averaged 13.6 false alarms, while those given restrictive 

instructions averaged only 7.0 false alarms.  The difference between the average numbers 



 

of correct rejections also increased compared to easy scenes, indicating that those given 

permissive instructions tended to search more thoroughly.  While the average number of 

false alarms thus increased compared to easy scenes, the ratio of average false alarms 

decreased: from 3.2 for easy scenes to 1.8 for hard scenes.  See Figure 23. 
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Figure 23.   Effects of instructions on false alarm rates in easy and hard scenes. 

 
What caused these differences?  Why were there such big differences in the 

numbers of false alarms among differently instructed observers?  And why was the 

difference bigger among easy scenes than among hard scenes?  The answers to these 

questions lie in the calculation of false alarm rates: numerators and denominators. 

Observers given restrictive instructions implicitly required a higher degree of 

certainty before deciding whether an object was a target.  On easy and hard scenes, they 

hit just as many targets as their counterparts, but were far less likely to incorrectly click 

upon a non-target.  Hard scenes merely appeared to them as scenes containing few 

targets.  They generated a low number of false alarms because they were not inclined to 

‘waste’ their few precious available shots. 
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Since observers given permissive instructions were not penalized for incorrect 

responses (but were nonetheless restricted from taking “wild shots”), they required a low 

degree of certainty before clicking upon a suspected target.  On easy and hard scenes, 

their average numbers of hits were very comparable to observers given the opposite 

instructions.  On hard scenes, their average false alarm rates were nearly twice as high 

those given restrictive instructions, and more than three times as high on easy scenes.  

Since these observers were permitted to click more liberally, they were very likely to 

approach the upper limit of targets within a scene (identified in the instructions as “up to 

six targets per scene”).  Having viewed some scenes with no readily apparent targets, 

these observers viewed subsequent easy scenes in much the same manner: wanting to 

maximize the number of hits, they correctly identified the obvious targets but nonetheless 

required very low certainty before clicking upon non-targets.  Observers given permissive 

instructions were thus much more willing to click upon non-targets in easy scenes.  Since 

most scenes contained fewer than six targets, they were very likely to accrue false alarms.   

3. Bias and Sensitivity 

Continuing the analysis by calculating and analyzing each participant’s measured 

values of sensitivity (d’) and bias (β ) helped to more fully understand the target 

detection performance of the experiment’s participants.  Calculation of d’ used both an 

observer’s sample hit rate and false alarm rate.  It represents an observer’s ability to 

accurately distinguish ‘signal plus noise’ events from ‘noise alone’ events.  As in the 

analysis of the hit rates, the most important factor in determining an observer’s sensitivity 

was scene Difficulty (p-value <0.001).  In this study, an observer’s sensitivity was thus 

affected only by the saliency of the target within the scene.  Neither combat experience 

nor instructions had any apparent bearing on how well a participant detected true targets 

within the scenes.  Given this study’s relatively homogeneous sample population (well-

educated mid-career active duty U.S. military officers) and the physical characteristics of 

the observation task, it was unsurprising that the participants exhibited very similar 

sensitivities to targets.   
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Finally, analysis of bias revealed the primary factors underlying an observer’s 

placement of criterion.  The factors significantly affecting bias in this study were 

Instructions (p-value 0.019), Difficulty (p value 0.001), and the two-way interaction 

between Instruction and Difficulty (p-value 0.025).  Similar to the findings of significant 

factors driving false alarm rates, the placement of an observer’s criterion (that is, the 

balancing of his desires to correctly hit targets and reject non-targets) was dependent on 

the level of scene Difficulty, the task Instructions, and the interaction between Difficulty 

and Instruction.  The combat Experience of the observer had no significant bearing on 

resultant criterion. 

Generally, effective models are those that include only the most essential factors.  

Higher-order interactions rarely have important places in such models.  It was 

unsurprising that the three-way interaction between Experience, Instruction, and Scene 

Difficulty was not important to predicting hit rate, false alarm rate, sensitivity, or bias.  

The significant two-way interaction between Instruction and Difficulty in predicting false 

alarm rates and observer bias was nonetheless an unexpected but highly important 

outcome. 

C. IMPLICATIONS 

False alarms will occur as long as imperfect detectors seek to separate signals 

from noise.  In order to accurately represent human performance, then, developers of 

combat models must no longer model only the physical properties of target detection.  

They must consider and account for the observer’s propensity to falsely detect targets.  In 

doing so, they must develop methods to incorporate the observer’s instructions and an 

assessment of the ‘difficulty’ of finding the target in the scene. 

As of this writing, American troops have been in Iraq for just over five years. 

Soldiers and Marines have conducted thousands of convoys and foot patrols and have 

accumulated a wealth of combat experience that the services have not seen in more than a 

generation.  Given that so many of the current combat models were conceived and 

developed during and immediately following the Cold War, there is some doubt as to 
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whether these combat models reflect the growing body of ‘institutional knowledge.’  

Having determined that observer Experience does not significantly affect false alarm 

rates, the results of this experiment may allay such doubts.   

The critical distinctive of Instructions is how the observer is to accomplish the 

assigned task.  The spectrum of observer’s instructions can include such sources as: 

cultural perspectives, command climate, unit morale, mission statements, rules of 

engagement, ammunition supply, stress, and emotion.  Although quantifying and 

modeling these parameters may be daunting tasks, it is clear that it is important. 

Quantitatively assessing the Difficulty of the observer’s scene appears much more 

feasible.  Methods and techniques exist that enable modelers to account for the target’s 

color, shape, texture, and brightness, and also the surrounding area’s color texture, 

brightness, contrast, and clutter.  Modeling and rendering the physical properties of one 

entity seeing another is a task the combat modelers are tackling now. 

Modelers must continue to develop precise qualitative and quantitative methods to 

assess the difficulty of an entity’s scene and establish a means of integrating the 

observer’s instructions.  In addition to these steps, modelers must also connect these two 

factors such that they capture their apparent interactive effects.  Failure to do so is an 

implicit acceptance of lower-resolution models. 

D. CONNECTIONS TO LITERATURE REVIEW 

The importance of Difficulty and Instructions in false positive detections is a 

finding that significantly affects existing combat models and the application of current 

military doctrine and previous eye tracking studies.    

1. Combat Models 

The apparent significance of Instructions reveals weaknesses in the ways combat 

models such as ACQUIRE and CASTFOREM account for false positive detections.  The 

ACQUIRE algorithm emphasizes the physical aspects of target detection and therefore 

neglects a critical aspect of representing false positive detections.  By ignoring 
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Instructions and the Difficulty-Instructions interaction, it essentially accounts for only a 

third of the factors contributing to false alarms.  The results of this research provide good 

reason for modelers to gather information that will appropriately account for such 

transient factors as commander’s intent and rules of engagement. 

This research also shows that CASTFOREM’s approach to false positive 

detections is inappropriate.  It relies only on distributions of true targets when the rate of 

false positive detections requires information concerning observers and targets alike.  By 

inserting additional entities into the scenario and internally labeling them as false targets, 

CASTFOREM implicitly rejects this experiment’s findings.  The results of this 

experiment show that CASTFOREM’s method of presenting true targets and treating 

them as false targets is inaccurate. 

2. Doctrine 

Military doctrinal manuals prescribe a two-step search technique that is 

influenced by the Soldier’s bias.  They suggest that false positive detections tend to occur 

in initial searches and that continued searching reduces the number of missed targets.  

The first step encourages hitting a high number of targets and missing very few of them.  

The second step requires more time and encourages observers to avoid missing targets 

while still keeping low the number of false alarms.  Detecting and responding to a target 

at any point in the search process forces the observer to begin the process anew.  

The first step (hasty search) coincides with a Soldier’s natural desire to quickly 

detect the enemy.  An observer using this technique requires low certainty about a 

suspected target’s identity, thereby permitting a high number of false positive detections.  

The recommendation of hasty searches implies that the costs of missing targets are much 

higher than the costs of false positive detections.  These are the fundamental 

characteristics of a low bias condition regardless of the observer’s detection capability.   

The task in this experiment reflected the initial, hasty search of an area.  Limiting 

observation time to 15 seconds forced observers to rapidly and actively search for targets 

in the entire scene.  The time limit generally prohibited observers from transitioning to 
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the slower and more deliberate search method.  According to the results of this 

experiment, Soldiers given low bias instructions will be even more apt to immediately 

and incorrectly respond to non-targets. 

3. Signal Detection Theory 

Signal Detection Theory must allow for an expansion of terms.  In experiments of 

the classic Yes-No or Two-Alternative Forced-Choice Tasks, the current four response 

descriptors (hit, miss, correct rejection, and false alarm) suffice.  With the advent of high-

fidelity eye-tracking technology the original four descriptors insufficiently describe the 

range of responses in multiple-target scenarios.  More specifically, there must be greater 

resolution between types of misses.  There must be a distinction between 1) simply not 

looking at a target (due to excellent camouflage, neglect, or even apathy) and 2) looking 

at a target but choosing not to declare it a target.  The former might be called an 

‘Oversight,’ while the latter might be called an ‘Incorrect Rejection.’  Analysts must 

review these classifications in terms of their implications on the current definitions of hit 

rates, false alarm rates, and ROC curves.  To continue this study in light of this expanded 

set of observer responses, an experimenter may count the number of times a participant 

looked at a target but chose not to click on it.  All such events would be called ‘Incorrect 

Rejections.’  The experimenter would then examine if these incorrect rejections are the 

result of observer experience, instructional bias, and scene difficulty. 

4. Eye Tracking Research 

This experiment was greatly influenced by the works of many excellent target 

detection and eye tracking researchers.  Their findings influenced the choice of 

participants and equipment, the development of instructions, and the experimental 

procedures.  Although previous researchers analyzed and reported false alarms and false 

alarm rates only as incidental to studies emphasizing hits and hit rates, this research 

generally confirms their conclusions. 
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The choice of participants and equipment reflect the nature and purpose of the 

study.  Since the search of enemy personnel lies squarely within the military domain, 

active duty military personnel were naturally chosen for this experiment.  The Naval 

Postgraduate School provided a deep pool of such participants.  Participants with broad 

ranges of experiences permitted arriving at the conclusion that Experience significantly 

affected neither hit rates nor false alarm rates.  Without a breadth of training and combat 

backgrounds, the experimenter would not have been able to make this distinction.   

The instructions given to participants clearly affected target detection 

performance.  As noted in Chapter II, Ozkaptan (1979) and Pavel (1987) both recognized 

that instructions given to participants greatly influence subsequent performance.  More 

specifically, Yeh (1998) concluded that observer expectancies improve performance 

when targets are present, but hinder performance when targets are absent.  Yeh’s 

conclusion sheds additional light on the significant effect of the Difficulty-Instructions 

interaction.  Finally, See (1997) found that observer bias decreased as the number of 

targets increased.  Since most of their experiments presumably did not have access to eye 

tracking technology of sufficient fidelity, they were unable to track and record the 

‘correct rejections’ of participants.  Accordingly, these researchers focused their research 

and analysis primarily on hits and hit rates.  Nonetheless, their general observations and 

this experiment confirm that their conclusions apply to false alarms and false alarm rates, 

too. 
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VI. CONCLUSION AND RECOMMENDATIONS 

A. IMPLICATIONS FOR COMBAT MODELS 

Target detection algorithms emphasize the physical aspects of detection in favor 

of accurately representing hit rates.  In doing so, these models poorly represent actual 

false alarms and largely neglect an observer’s bias.  This research confirmed that the 

current approach adequately models hits and hit rates.  In terms of false alarms and false 

alarm rates, however, this research showed that simply assessing the scene’s difficulty is 

insufficient.  The set of observer instructions was shown to also be a significant factor.  

Furthermore, there was significant interaction between a scene’s difficulty and the 

observer’s instructions. 

Increasing the complexity of target detection algorithms with additional factors 

may prove to be computationally expensive.  If model developers and users determine 

that the accurate representation of false alarms remains unimportant, then there is little to 

be gained by incorporating such complicating factors into future combat models.  Despite 

this seemingly high hurdle, the increasing complexity of modern warfare and the growing 

reliance upon modeling and simulation for realistic training demands that such models 

accurately represent human behavior. 

Developers of combat models must continue to improve target detection 

algorithms.  They must design and create entities that have hit rates and false alarm rates 

that closely approximate the hit rates and false alarm rates of human observers.  To 

maximize training effectiveness, combat models and simulations must incorporate the 

significant effects of observer instructions and bias. 
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B. AREAS OF FUTURE RESEARCH 

 The purpose of this experiment was to explore the causes of false alarms in the 

unaided visual search for human targets in an urban combat environment.  The 

experiment’s ultimate goal is the improvement of combat models and simulations.  While 

the findings of this research proved significant, there is still much to be learned. 

Analysis of this experiment revealed no substantial difference in target detection 

performance among officers with extensive infantry experience versus other military 

officers.  In assigning observers to either the ‘high experience’ or ‘low experience’ 

groups, there was no distinction between target detection training and target detection 

experience.  As a result, this study included no analysis of their differences.  To 

thoroughly assess this apparent indistinguishability, future experimenters may wish to 

study the target detection behavior of more diverse groups of subjects.  Repeating this 

study with infantrymen having immediately returned from deployments featuring 

frequent urban combat versus ROTC or academy cadets will provide a more robust 

comparison. 

 Future experimenters may wish to obtain more specific data about individual 

targets and scenes.  This experiment included neither analysis of the time to detect 

individual targets nor of their sequence of detection within each scene.  Studying these 

dependent variables may shed even more light upon the target detection sequence. 

 Finally, those conducting future research may seek to develop a means to increase 

the realism of the target detection scene.  Instead of a single computer screen they may 

use multiple screens to create a 180 degree scan.  Instead of a mouse pointer they may 

use a laser-equipped rifle.  Instead of all having all targets in a scene appear either well-

exposed or well-hidden they may devise a way to mix such targets without compromising 

the ability to capture an observer’s correct rejections. 
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APPENDIX A: PARTICIPANT SCREENING SURVEY 

TARGET DETECTION IN COMBAT MODELS 
 
Thank you for your willingness to participate in this research project.  Please answer 
the following questions as precisely as possible. 
 
1. Name: _______________________ Email: ____________________@nps.edu 
 
2. Citizenship:   United States  Other:____________________________________ 
 
3. Branch of service:    Army   Navy   Marine   Air Force   Other: _______________ 
 
4. How experienced, trained, or qualified are you in the following Urban Operations 

(UO) areas (circle as appropriate): 
Low       Moderate  High 

a. Close Quarters Battle    *        *        *        *        *        *        *       *       * 
b. Leading Convoys    *        *        *        *        *        *        *       *       * 
c. Convoy Security    *        *        *        *        *        *        *       *       * 
 

5. Have you deployed to Iraq or Afghanistan since April 2003?  
No   Yes Return date: ____________________ 
 

6. If you have deployed to Iraq or Afghanistan, approximately how many times did 
you 

 
a. conduct a patrol on foot? ______________________________________ 
 
b. conduct a vehicle-mounted patrol (or convoy)? _____________________ 
 

7. Briefly describe any of the following specialized target-detection training or 
experiences you may have received (such as sniper, scout/reconnaissance, 
shoot/don’t shoot exercises)   

 
_______________________________________________________________
_______________________________________________________________ 
 

8. Do you have a visual correction prescription?  Yes  No 
a. If Yes, do you wear glasses?    Yes  No 
b. If Yes, do you wear contact lenses?    Yes  No 
c. If No, have you received visual corrective surgery? Yes  No 

 
 

mailto:____________________@nps.edu
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9. How often do you usually play video/computer games featuring first-person 
shooters?  

a. Almost every day    
b. Once or twice per week    
c. Once or twice per month 
d. Less often 

 
 

We will review your responses and contact you to arrange a time for completion 
of the target detection scenario.   

 
In the 24 hours prior to you participation, please do not depart from your usual 

sleep routine and use of caffeine, tobacco, and/or alcohol.  
 
If you have a visual correction prescription, please wear your glasses to the 

experimental session.  The wearing of contact lenses will inhibit data collection. 
 
Thank you!   
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APPENDIX B: INFORMED CONSENT WAIVER 

Naval Postgraduate School 
Informed Consent Form 

 
Introduction.  I understand that have been invited to participate in a study entitled Target 
Detections in Combat Models being conducted by the Operations Research Department and 
MOVES Institute of the Naval Postgraduate School.   
 
Procedures.  I understand that the purpose of this research is to improve the target 
detection characteristics employed by current and future combat models.  I understand that 
I will be shown several scenes from a fictitious combat environment and that these scenes 
may contain varying numbers of human-like targets.  I understand that I will use typical 
office computer equipment to indicate target detection and that approximately 45 minutes 
may be required for set-up, familiarization, scene presentation, and questionnaires. 
 
Risks and Benefits.  I understand that this project does not involve greater than minimal 
risk and involves no known reasonably foreseeable risks or hazards greater than those 
encountered in everyday life.  I have also been informed of any benefits to myself or to 
others that may reasonably be expected as a result of this research.  
 
Compensation.  I understand that no tangible compensation will be given.  I understand 
that a copy of the research results will be available in the student thesis section of the 
Dudley Knox Library at the conclusion of the experiment. 
 
Confidentiality & Privacy Act.  I understand that all records of this study will be kept 
confidential and that my privacy will be safeguarded.  No information will be publicly 
accessible which could identify me as a participant.  I will be identified only as a code 
number on all research forms/data bases.  My name on any signed document will not be 
paired with my code number in order to protect my identity.  I understand that records of 
my participation will be maintained by NPS for three years, after which they will be 
destroyed.   
 
Voluntary Nature of the Study.  I understand that my participation is strictly voluntary, 
and if I agree to participate, I am free to withdraw at any time without prejudice.   
 
Points of Contact.  I understand that if I have any questions or comments regarding this 
project upon the completion of my participation, I should contact the Principal Investigator, 
Dr. Lawrence G. Shattuck, 656-2473, lgshattu@nps.edu.  Any medical questions should be 
addressed to LTC Eric Morgan, MC, USA, (CO, POM Medical Clinic), (831) 242-7550, 
eric.morgan@nw.amedd.army.mil.  Any other questions or concerns may be addressed to 
the IRB Chair, LT Brent Olde, 656-3807, baolde@nps.edu. 
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Statement of Consent.  I have been provided with a full explanation of the purpose, 
procedures, and duration of my participation in this research project.  I understand how 
my identification will be safeguarded and have had all my questions answered.  I have 
been provided a copy of this form for my records and I agree to participate in this study. I 
understand that by agreeing to participate in this research and signing this form, I do not 
waive any of my legal rights. 
 
________________________________________  __________________ 
Participant’s Signature     Date 
 
________________________________________  __________________ 
Researcher’s Signature     Date 
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APPENDIX C: PRE-EXPERIMENT QUESTIONNAIRE 

Participant Number: ____________      
 

10. Age: ________ 

11. Gender:    Male     Female  

12. Manual Dexterity:       Right-handed  Left-handed 

13. Military Rank: ____________ 

14. Years of Military Service: ____________ 

15. How long (to the nearest half hour) did you sleep last night? ___________ 

a. How many hours do you normally sleep each night? ____________ 

16. How much caffeine have you consumed today? ____________ 

a. How much do you typically consume by this time of day? ____________ 

17.  How much of any tobacco product have you used today? ____________ 

a. How much do you typically use by this time of day? ____________ 

18. Do you have a prescription for glasses or contact lenses?     Yes    No 

a. If yes, are you wearing prescription lenses now?     Yes    No 

b. If no, have you received visual corrective surgery?    Yes    No 

 

 

************************ Return This Sheet to Experimenter ****************** 
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APPENDIX D: RESTRICTIVE INSTRUCTIONS 

You will be presented a series of scenes representing a combat environment.  
Each scene will contain between one and six targets.  When you detect a target, place 
the mouse pointer over the target and press the left mouse button once.  Do not double-
click.  When you are satisfied that you have detected all of the targets within a scene, 
advance to the next scene by pressing the ENTER key on the keyboard. 

 
You cannot ‘undo’ any click.  You cannot return to any previous scene. 

 
Quickly locating the enemy is important.  While you are searching for the enemy, 

he is also searching for you!  Accurately locating the enemy is also important.  Think of 
each mouse click as a rifle shot: if the enemy is present, then you want to shoot him 
quickly; if the enemy is not present, then unnecessary shots will reveal your position. 

 
Only enemy combatants are present in these scenes. 

 
It is important to engage all enemy combatants.  For each scene, you will be 

allocated only as many ‘for record’ shots as the number of targets contained in the scene.  
Any additional shots will not be counted.  There will be no indication of the number of 
targets contained in any given scene.   

 
Example: Scene X has three targets, so you are allocated three ‘for-record’ shots.  

You choose to click five times in Scene X.  Only the first three shots are recorded; the 
fourth and fifth shots are not. 

 
Lastly, you must detect and respond to all targets in each scene within 15 

seconds.  You may advance to the next scene prior the expiration of the time limit.  The 
experimenter will announce “Next” when the time expires, at which time you must 
advance to the next scene by pressing the ENTER key. 
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APPENDIX E: PERMISSIVE INSTRUCTIONS 

You will be presented a series of scenes representing a combat environment.  
Each scene will contain between one and six targets.  When you detect a target, place 
the mouse pointer over the target and press the left mouse button once.  Do not double-
click.  When you are satisfied that you have detected all of the targets within a scene, 
advance to the next scene by pressing the ENTER key on the keyboard. 

 
You cannot ‘undo’ any click.  You cannot return to any previous scene. 

 
Quickly locating the enemy is important.  While you are searching for the enemy, 

he is also searching for you!  Accurately locating the enemy is also important.  Think of 
each mouse click as a rifle shot: if the enemy is present, then you want to shoot him 
quickly but you do not want to unnecessarily expose yourself to enemy fire. 

 
Only enemy combatants are present in these scenes. 

 
It is important to engage enemy combatants.  The current tactical situation and 

Rules of Engagement do not require you to be certain of a target’s identity before firing.  
You are not limited in the number of suspected targets you may engage, but you must not 
take ‘wild shots.’   

 
Lastly, you must detect and respond to all targets in each scene within 15 

seconds.  You may advance to the next scene prior the expiration of the time limit.  The 
experimenter will announce “Next” when the time expires, at which time you must 
advance to the next scene by pressing the ENTER key.  
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